Skip to main content Accessibility help
×
Home

Mechanisms in the Formation of High Quality Schottky Contacts to n-type ZnO

  • Martin Ward Allen (a1), Holger von Wenckstern (a2), Marius Grundmann (a3), Stuart Hatfield (a4), Paul Jefferson (a5), Philip King (a6), Timothy Veal (a7), Chris McConville (a8) and Steven Durbin (a9)...

Abstract

Pt, Ir, Ni, Pd, and silver oxide Schottky contacts were fabricated on the Zn-polar surface of hydrothermally grown bulk ZnO. A relationship was observed between the barrier height of the contact and the free energy of formation of the “metal” oxide. This is consistent with the dominating influence of oxygen vacancies (VO) which tend to pin the ZnO Fermi level close to the VO (+2,0) defect level at approximately EC - 0.7 eV, where EC is the conduction band minimum. Valence band x-ray photoemission spectroscopy and the current - voltage characteristics of planar Schottky diodes, measured on similar Zn-polar surfaces, showed the existence of a vacuum activated surface accumulation layer. This is possibly a consequence of the observed OH termination of the Zn-polar surface. The surface accumulation layer is compensated in atmospheric conditions by the presence of acceptor-like adsorbates, such as O2 and H2O. The formation of high quality Schottky contacts to ZnO should therefore involve the reduction of near surface oxygen vacancies and the removal of H or OH from the surface.

Copyright

References

Hide All
1. Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., S, Dogan, Avrutin, V., Cho, S.J., and Morkoc, H., J. Appl. Phys. 98, 041301 (2005).
2. Maeda, K., Sato, M., Niikura, I. and Fukuda, T., Semicond. Sci. Technol. 20, S49 (2005).10.1088/0268-1242/20/4/006
3. Veal, T. D., Jefferson, P. H., Piper, L. F. J., McConville, C. F., Joyce, T. B., Chalker, P. R., Considine, L., Lu, H., and Schaff, W. J., Appl. Phys. Lett. 89, 202110 (2006).
4. Robertson, J., Sharia, O., and Demkov, A.A., Appl. Phys. Lett. 91, 132912 (2007).10.1063/1.2790479
5. Kohan, A. F., Ceder, G., Morgan, D., and C. G. Van de Walle, Phys. Rev. B 61, 15019 (2000).
6. Walle, C. G. Van de, Physica B 308, 899 (2001).10.1016/S0921-4526(01)00830-4
7. Selim, F. A., Weber, M. H., Solodovnikov, D., and Lynn, K. G., Phys. Rev. Lett. 99, 085502 (2007).10.1103/PhysRevLett.99.085502
8. Allen, M. W., Durbin, S. M., and Metson, J. B., Appl. Phys. Lett. 91, 053512 (2007).
9. Schmidt, O., Geis, A., Kiesel, P., Walle, C. G. Van de, Johnson, N. M., Bakin, A., Waag, A., and Dohler, G. H., Superlatt. and Microstruct. 39, 8 (2006).10.1016/j.spmi.2005.08.056
10. Fukutani, K., Iwai, H., Murata, Y., and Yamashita, H., Phys. Rev. B 59, 13020 (1999).10.1103/PhysRevB.59.13020

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed