Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T18:00:07.140Z Has data issue: false hasContentIssue false

The Mechanisms and Kinetics of Surface Reactions of Trimethylgallium on GaAs (001) Surfaces and Its Relevance to Atomic Layer Epitaxy

Published online by Cambridge University Press:  16 February 2011

B. Y. Maa
Affiliation:
Department of Electrical Engineering and Center for Photonic Technology, University of Southern California, Los Angeles, California 90089-0483
P. D. Dapkus
Affiliation:
Department of Electrical Engineering and Center for Photonic Technology, University of Southern California, Los Angeles, California 90089-0483
Get access

Abstract

X-ray photoelectron spectroscopy (XPS) and reflection high energy electron diffraction (RHEED) have been applied to study the stable adsorbed Ga species and surface structures after GaAs (001) 2 × 4 As-rich surfaces are exposed to TMGa. These studies show that Ga atoms are the final adsorbed species, that Ga deposition is saturated at one atomic layer at temperatures between 360 and 530 °C and that the surface converts from a 2 × 4 to a 4 × 6 reconstruction after TMGa adsorption. To understand the surface reaction kinetics involved, reflectance-difference spectroscopy (RDS), an in situ rea-ltime optical technique developed by Aspnes et al., is applied to investigate TMGa adsorption on (001) GaAs surfaces. The kinetics of the surface reactions and reconstructions have been characterized over the temperature range from 400 to 500 °C using RDS. The transient RDS behaviors are interpreted by the application of a model that involves selective adsorption and reaction of TMGa at surface As sites and at Ga vacancies on Ga-rich reconstructed surfaces. Based upon these interpretations, rates of reaction and by product desorption are determined that suggest optimal strategies for ALE growth of GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. DenBaars, S.P., Beyler, C.A., Hariz, A, and Dapkus, P.D., Appl.Phys.Lett., 51, 1530 (1987)CrossRefGoogle Scholar
2. Mori, K., Yoshida, M., Usui, A., and Terao, H., Appl. Phys. Lett. 52, 27 (1988)CrossRefGoogle Scholar
3. Maa, B. Y., and Dapkus, P. D., J. Electron. Mater. 19, 289 (1990)CrossRefGoogle Scholar
4. Maa, B. Y., and Dapkus, P. D., J. Crystal Growth 105, 213 (1990)CrossRefGoogle Scholar
5. Maa, B. Y., and Dapkus, P. D., to be published in Appl. Phys. Lett 58, 20 May 1991 CrossRefGoogle Scholar
6. Aspnes, D. E., Harbison, J. P., Studna, A. A., and Florez, L. T., J. Vac. Sci. Technol. A6, 1327(1988)CrossRefGoogle Scholar
7. Paulsson, G., Deppert, K., Jeppesen, S., Jonsson, J., Samuelson, L., and Schmidt, P., J. Crystal Growth 105, 312 (1990)CrossRefGoogle Scholar
8. Pashley, M.D., Haberern, K.W., and Friday, W., Phys. Rev. Lett. 60, 2176 (1988)CrossRefGoogle Scholar
9. Chiu, T. H., Appl. Phys. Lett. 55, 1244 (1989)CrossRefGoogle Scholar
10. Aspnes, D. E., Harbison, J. P., Studna, A. A., Florez, L. T., and Kelly, M. K., J. Vac. Sci. Technol. B 6, 1127 (1988)CrossRefGoogle Scholar
11. Aspnes, D. E., Bhat, R., Colas, E., Keramidas, V. G., Koza, M. A., and Studna, A. A., J. Vac. Sci. Technol. A 7, 711 (1989)CrossRefGoogle Scholar
12. Aspnes, D. E., Chang, Y. C., Studna, A. A., Florez, L. T., Farrell, H. H., and Harbison, J. P., Phys. Rev. Lett. 64, 192 (1990)CrossRefGoogle Scholar
13. Memmert, U., and Yu, M., Appl. Phys. Lett. 56, 1883 (1990)CrossRefGoogle Scholar
14. Creighton, J. R., Lykke, K. R., Shamamian, V. A., and Kay, B. D., Appl. Phys. Lett. 57, 279 (1990)CrossRefGoogle Scholar
15. Nishizawa, J., Abe, H., and Kurabayashi, T., J. Electrochem. Soc. 132, 1197 (1985)CrossRefGoogle Scholar
16. Qian, G. X., Martin, R. M., and , D, Chadi, J., J. Vac. Sci. Technol. B5, 1482 (1987)Google Scholar
17. Maa, B. Y., PhD. Thesis, University of Southern California (1991)Google Scholar
18. Creighton, J. R., surface science 234, 287 (1990)CrossRefGoogle Scholar
19. Nishizawa, J., and Kurabayashi, T., J. Crystal Growth 93, 98 (1988)CrossRefGoogle Scholar
20. Farrell, H. H., Harbison, J. P., and Peterson, L. D., J. Vac. Sci. Technol. B 5, 1482 (1987)CrossRefGoogle Scholar
21. Yu, M. L., invited talk in Material Research Society Spring Meeting, Anaheim, CA, 1991 Google Scholar