Skip to main content Accessibility help
×
Home

Mechanism of Interdiffusion in Hg1-XXxTe/CdTe Superlattices (X = Cd, Mn, AND Zn)

  • J.-L. Staudenmann (a1), R. D. Knox (a1) and J.-P. Faurie (a2)

Abstract

The interdiffusion mechanism in Hg(l-x)X(x)Te/CdTe superlattices where X is Cd, Mn, or Zn can be deduced from the magnitude of the interdiffusion activation energy. By comparing in-situ x-ray diffraction measurements (our work) with results from Tang and Stevenson (J. Vac. Sci. Technol. AS, 1987), it is found that anionic and cationic Frenkel pairs represent the most likely interdiffusion mechanism in Hg(l-x)X(x)Te/CdTe superlattices. This model mixes vacancies and interstitials, as well as maintaining the conduction type and the electronic mobility. It is further shown that interdiffusion sets in as soon as the growth starts.

Copyright

References

Hide All
Ames Laboratory is operated by the US Department of Energy by Iowa State University under contract No. W-7405-Eng-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.
1. Smith, D.L., McGill, T.C., and Schulman, J.N., Appl. Phys. Lett. 43, 180 (1983).
2. Faurie, J.-P., Million, A., and Piaquet, J., Appl. Phys. Lett. 41, 713 (1982).
3. - Arch, D.K., Staudenmann, J.-L., and Faurie, J.-P., Appl. Phys. Lett. 4A, 1588 (1986); D.K. Arch, J.-L. Staudenmann, and Appl. Phys. Lett. 49, 745 (1986).
- Arch, D.K., Faurie, J.-P., Staudenmann, J.-L., Hibbs-Brenner, M., and chow, P., J. Vac. Sci. Technol. A4, 2101 (1986).
4. Staudenmann, J.-L., Horning, R.D., Knox, R.D., Faurie, J.-P., Reno, J., Sou, I.K., and Arch, D.K., Trans. Met. AIME, 1986, “In-Situ Interdiffusion Measurements in HgTe-CdTe Superlattices,” in Semiconductor Based Heterostructures : Interfacial Structure and Stability, edited by Green, M.L., Baglin, J.E.E., Chin, G.Y., Deokman, H.W., Mayo, W., and Narasinham, D.. A publication of the Metallurgical Society, Inc., Warrendale, PA 15086, 1986. p. 41.
5. Gorshkov, A.V., Zaitov, F.A., Shangin, S.B., Shalyapina, G.M., Petrov, I.N., and Asaturova, I.S., Soy. Phys. Solid State 26, 17871791 (1984).
6. Spicer, W.E., Silberman, J.A., Lindau, I., Chen, A.B., Sher, A., and Wilson, J. A., J. Vac. Sci. Technol. A1, 1735 (1983).
7. Sher, A., Chen, A.B., Spicer, W.E., and Shih, C.K., J. Vac. Sci. Technol. A3, 105 (1985).
8. Sivananthan, S., Chu, X., and Faurie, J.-P., Appl. Phys. Lett., to be published.
9. Staudenmann, J.-L., Knox, R.D., and Faurie, J.-P., J. Vac. Sol. Technol. A5, 1987, in the press.
10. Sapoval, B., Rosso, M., and Gouyet, J.-F., J. Physique Lett. 46, L149 (1985).
11. Zanio, K.R., J. Vac. Sci. Technol. A4, 21062109 (1986).
12. Tang, M.F.S. and Stevenson, D.A., J. Vac. Sci. Technol. A5, 1987, in the press.
13. Fleming, R.M., McWhan, D.B., Gossard, A.C., Wiegman, W., and Logan, R.A., J. Appl. Phys. 51, 357 (1980).
14. McWhan, D.B., “Structure of Chemically Modulated Films,” in Synthetic Modulated Structures edited by Chang, L.L. and Giessen, B.C., Academic Press, New York, 1985, pp. 4567.
15. Reno, J., Sou, I.K., Wijewarnasurya, P.S., and Faurie, J.-P., Appl. Phys. Lett. 48, 1069 (1986).
16. Chu, X., Sivananthan, S. and Faurie, J.-P., Appl. Phys. Lett. 50, 597 (1987).
17. Sapoval, B., Rosso, M., Gouyet, J.-F., and Colonna, J.-F., Solid State Ionics 18 & 19, 21 (1986).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed