Skip to main content Accessibility help
×
Home

Mechanics of Diffusion-Induced Fractures in Lithium-ion Battery Materials

  • Cheng-Kai ChiuHuang (a1), Michael A. Stamps (a1) and Hsiao-Ying Shadow Huang (a1)

Abstract

Our study is motivated by the need for development and deployment of reliable and efficient energy storage devices, such as lithium-ion batteries. However, the rate-capacity loss is the key obstacle faced by current lithium-ion battery technology, hindering many potential large-scale engineering applications, such as future transportation modalities, grid stabilization and storage systems for renewable energy. During electrochemical processes, diffusion-induced stress is an important factor causing electrode material capacity loss and failure. In this study, we present models that are capable for describing diffusion mechanisms and stress formation in LiFePO4 nanoparticles, a lithium-ion battery cathode material which promises an alternative, with the potential for reduced cost and improved safety. To evaluate mechanics of diffusion-induced fractures, a plate-like model is adopted with anisotropic materials properties and volume misfits during the phase transformation are considered. Stress distribution at phase boundaries and fracture mechanics information (energy release rates and stress intensity factors) are provided to further understand the stress development due to lithium-ion diffusion during discharging. This study contributes to the fundamental understanding of kinetics of materials in lithium-ion batteries, and results from our stress analysis provides better electrode materials design rules for future lithium-ion batteries.

Copyright

Corresponding author

References

Hide All
[1] Padhi, A.K., Nanjundaswamy, K.S., Goodenough, J.B., Journal of the Electrochemical Society, 144 (1997) 11881194.
[2] Wang, Y., Huang, H.-Y.S., Materials Research Society Proceedings, 1363-RR05-30 (2011).
[3] Wang, Y., Huang, H.-Y.S., ASME International Mechanical Engineering Congress and Exposition Proceedings, IMECE201165663 (2011).
[4] Wang, Y., Huang, H.-Y.S., TSEST Transaction on Control and Mechanical Systems, 1 (2012) 192200.
[5] ChiuHuang, C.-K., Huang, H.-Y.S., ASME International Mechanical Engineering Congress and Exposition Proceeding, IMECE201289235 (2012).
[6] Boulfelfel, S.E., Seifert, G., Leoni, S., Journal of Materials Chemistry, 21 (2011) 1636516372.
[7] Nishimura, S.-i., Kobayashi, G., Ohoyama, K., Kanno, R., Yashima, M., Yamada, A., Nature Materials, 7 (2008) 707711.
[8] Malik, R., Burch, D., Bazant, M., Ceder, G., Nano Letters, 10 (2010) 41234127.
[9] Dathar, G.K.P., Sheppard, D., Stevenson, K.J., Henkelman, G., Chemistry of Materials, 23 (2011) 40324037.
[10] Yang, J.J., Tse, J.S., Journal of Physical Chemistry A, 115 (2011) 1304513049.
[11] Delmas, C., Maccario, M., Croguennec, L., Le Cras, F., Weill, F., Nat Mater, 7 (2008) 665671.
[12] Laffont, L., Delacourt, C., Gibot, P., Wu, M.Y., Kooyman, P., Masquelier, C., Tarascon, J.M., Chemistry of Materials, 18 (2006) 55205529.
[13] Chen, G., Song, X., Richardson, T.J., Electrochemical and Solid-State Letters, 9 (2006) A295A298.
[14] Ramana, C.V., Mauger, A., Gendron, F., Julien, C.M., Zaghib, K., Journal of Power Sources, 187 (2009) 555564.
[15] Brunetti, G., Robert, D., Bayle-Guillemaud, P., Rouviere, J.L., Rauch, E.F., Martin, J.F., Colin, J.F., Bertin, F., Cayron, C., Chemistry of Materials, 23 (2011) 45154524.
[16] Bai, P., Cogswell, D.A., Bazant, M.Z., Nano Letters, 11 (2011) 48904896.
[17] Van der Ven, A., Garikipati, K., Kim, S., Wagemaker, M., Journal of the Electrochemical Society, 156 (2009) A949A957.
[18] Meethong, N., Huang, H.-Y.S., Speakman, S.A., Carter, W.C., Chiang, Y.-M., Advanced Functional Materials, 17 (2007) 11151123.
[19] Huang, H.Y.S., Wang, Y.X., Journal of the Electrochemical Society, 159 (2012) A815A821.
[20] Stamps, M.A., Huang, H.-Y.S., ASME International Mechanical Engineering Congress and Exposition Proceeding IMECE201288037 (2012).
[21] I. Ansys, ANSYS commands reference, release 12.0, ANSYS, Inc, Canonsburg, PA, 2009.
[22] Maxisch, T., Ceder, G., Physical Review B, 73 (2006) 174112–174112.
[23] Gabrisch, H., Wilcox, J., Doeff, M.M., Electrochemical and Solid State Letters, 11 (2008) A25A29.
[24] Streltsov, V.A., Belokoneva, E.L., Tsirelson, V.G., Hansen, N.K., Acta Crystallographica Section B-Structural Science, 49 (1993) 147153.
[25] Rousse, G., Rodriguez-Carvajal, J., Patoux, S., Masquelier, C., Chemistry of Materials, 15 (2003) 40824090.
[26] Cook, R.D., Finite element modeling for stress analysis, John Wiley & Sons, Inc., New York, 1995.
[27] Cook, R.D., Malkus, D.S., Plesha, M.E., Concepts and Applications of Finite Element Analysis, John Willey and Sons, Inc., 1989.
[28] Hutchinson, J.W., Suo, Z., Advances in Applied Mechanics, Vol 29, 29 (1992) 63191.
[29] Wang, L., Zhou, F., Meng, Y.S., Ceder, G., Physical Review B, 76 (2007).
[30] Chung, S.-Y., Bloking, J.T., Chiang, Y.-M., Nature Materials, 1 (2002) 128–128.
[31] Meethong, N., Huang, H.-Y.S., Carter, W.C., Chiang, Y.-M., Electrochemical and Solid State Letters, 10 (2007) A134A138.

Keywords

Related content

Powered by UNSILO

Mechanics of Diffusion-Induced Fractures in Lithium-ion Battery Materials

  • Cheng-Kai ChiuHuang (a1), Michael A. Stamps (a1) and Hsiao-Ying Shadow Huang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.