Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T01:58:45.869Z Has data issue: false hasContentIssue false

Mechanical testing and microstructural characterisation of TiN thin films

Published online by Cambridge University Press:  10 February 2011

A. Karimi
Affiliation:
Département de Physique, Ecole Polytechnique Fédérale de Lausanne, (Switzerland)
O. R. Shojaei
Affiliation:
Département de Physique, Ecole Polytechnique Fédérale de Lausanne, (Switzerland)
J. L. Martin
Affiliation:
Département de Physique, Ecole Polytechnique Fédérale de Lausanne, (Switzerland)
Get access

Abstract

Mechanical properties of titanium nitride (TiNx) thin films have been investigated using the bulge test and the depth sensing nanoindentation measurements. The bulge test was performed on the square free standing membranes made by means of standard micromachining of silicon wafers, while the nanoindentation was conducted on the films adhered to their supporting substrate. Thin layeres of titanium nitride (t = 300 – 1000 nm) were deposited in a r. f. magnetron sputtering system on the Si(100) wafers containing a layer of low stress LPCVD silicon nitride (SiNy). The bulge test was first conducted on the silicon nitride film to determine its proper residual stress and Young's modulus. Then, the composite membrane made of TiNx together with underlying silicon nitride was bulged and the related load-displacement variation was measured. Finally, using a simple rule of mixture formula the elastic mechanical properties of TiNx coatings were calculated. Both the Young's modulus and residual stress showed increasing values with negative bias voltage and nitrogen to titanium ratio, but the substrate temperature between 50–570°C was found less significant as compared to the other parameters. Nanoindentation data extracted from dynamically loading-unloading of TiN films converged to the bulge test measurements for compact coatings, but diverged from the bulge test data for porous coatings. Scanning electron microscopy observation of the cross sectioned specimens showed that TiN films first grow by formation of the nanocrystallites of size mostly between 10 – 15 nm. These nanocrystallites give rise to the columnar morphology beyond a thickness of 50–100 nm. The columns change their aspect with deposition parameters, but remain nearly perpendicular to the film surface. Relationship between microstructural evolution of columns and mechanical properties of coatings are discussed in terms of deposition parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Veprek, S., Reiprich, S., Thin Solid Films 268, 6471 (1995).Google Scholar
2.Rother, B., Dietrich, D.A., Surf. Coat. Technol. 74–75, 625628 (1995).Google Scholar
3.Gagnon, G., Curie, J.F., Beique, G., Brebner, J.L., J. Appl. Phys. 75, 1565 (1994).Google Scholar
4.Li, W., He, X., Li, H., J. Appl. Phys. 75, 2002 (1994).Google Scholar
5.Manaila, R., Biro, D., Bama, P. B., Adamik, M., Zavaliche, F., Appl. Surf. Sci. 91,295 (1995).Google Scholar
6.Wittmer, M., J. Vac. Sci. Technol. A 3(4), 1797 (1985).Google Scholar
7.Goldfarb, I., Pelleg, J., Zevin, Z., Croitoru, N., Thin Solid Films 200, 117 (1991).Google Scholar
8.Nakamura, K., Inagawa, K., Tsuruoka, K., Komiya, S., Thin Solis Films 40, 155 (1977).Google Scholar
9.Robertson, J., Surf. Coat. Technol. 50, 185 (1992).Google Scholar
10.In, C.B., Kim, S.P., Chun, J.S., J. Mater. Sci. 29, 18181824 (1994).Google Scholar
11.Roth, R., Schubert, J., Fromm, E., Surf. Coat. Technol. 74–75, 461468(1995).Google Scholar
12.Pecz, B., Frangis, N., Logothetidis, S., Alexandrou, I., Thin Solid Film 268, 57 (1995).Google Scholar
13.Meng, W. J., Eesley, G.L., Thin Solid Film 271, 108116 (1995).Google Scholar
14.Muller, D., Fromm, E., Thin Solid Film 270,411416 (1995).Google Scholar
15.Kubo, Y., Hashimoto, M., Surf. Coat. Technol. 49, 342347(1991).Google Scholar
16.Rouzaud, A., Barbier, E., Ernoult, J., Quesnel, E., Thin Solid Film 270, 270274 (1995).Google Scholar
17.Török, E., Perry, A.J., Cholet, L., Sproul, W.D., Thin Solid Film 153, 37(1987).Google Scholar
18.Kim, J.O., Achenbach, J., Mikarimi, P.B., Shinn, M., J. Appl. Phys. 72, 1805 (1992).Google Scholar
19.Schwarzer, N., Whitting, M., Swain, M., Richter, F., Thin Solid Film 270, 37375 (1995).Google Scholar
20.Vijgen, R.O.E., Dautzenberg, J.H., Thin Solid Film 270, 264269 (1995).Google Scholar
21.Vlassak, J.J., Nix, W.D., J. Mater. Res. 7(12), 4242–3248 (1992).Google Scholar
22.Tabata, O., Kahawata, K., Sugiyama, S., Sensors and Actuators, 20, 135141(1989).Google Scholar
23.Oliver, W.C., Pharr, G.M., J. Mater. Res. 7(6), 15641583 (1992).Google Scholar
24. - Thornton, J.A., Annu. Rev. Mater. Sci. 7, 239 (1977).Google Scholar
25. - Messier, R., J. Vac. Sci. Technol. A 4(3), 490495 (1986).Google Scholar
26. - Cai, X., Bangert, H., Thin Solid Films 264, 5971(1995).Google Scholar