Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T18:36:57.026Z Has data issue: false hasContentIssue false

Mechanical Properties of Sputter-Deposited Nb5Si3 Film and Nb5Si3/Nb Microlaminates

Published online by Cambridge University Press:  21 February 2011

S. P. Rawal
Affiliation:
Martin Marietta Technologies, Inc., P.O. Box 179, MS-F3085, Denver, CO 80201
G. M. Swanson
Affiliation:
Martin Marietta Technologies, Inc., P.O. Box 179, MS-F3085, Denver, CO 80201
W. C. Moshier
Affiliation:
Martin Marietta Technologies, Inc., P.O. Box 179, MS-F3085, Denver, CO 80201
M. S. Misra
Affiliation:
Martin Marietta Technologies, Inc., P.O. Box 179, MS-F3085, Denver, CO 80201
Get access

Abstract

Monolithic Nb5Si3 films and microlaminates consisting of alternating, equally thick layers of Nb and Nb5Si3 were synthesized by magnetron sputtering. Thick monolithic Nb5Si3 films (25,000 nm) were deposited on a sapphire substrate to set process parameters and evaluate the microstructure and mechanical properties of as-deposited crystalline films. Nb5Si3/Nb micro-laminates with modulation wavelengths (i.e., bilayer thickness) of 40 and 200 nm were deposited on Nb substrates. Mechanical properties (elastic modulus, microhardness, compressive yield strength) of the films and microlaminates were studied using the nanoindentation method and Vickers microhardness. Mechanical property test results are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xiao, L. and Abbaschian, R., Materials Science and Engineering, A155, (1992) 135145.Google Scholar
2. Maxwell, W.A. and Smith, R.W., NACA RM E52 F26, (1952).Google Scholar
3. Fitzer, E., Rubisch, O., Schlichting, J., and Sewdas, I., Sci. Ceram., 6 (1973) XVIII.Google Scholar
4. Gac, F.D. and Petrovic, J.J., J. Am. Ceram. Soc., 68 (1985) C200.Google Scholar
5. Yang, J.M. and Jeng, S.M., Mater. Res. Soc. Symp. Proc., 194 (1990) 139.Google Scholar
6. Richardson, K.K. and Freitag, D.W., Ceram. Eng. Sci. Proc., 12 (9–10) (1991) 1679.Google Scholar
7. Gibala, R. et al., Materials Science and Engineering, A155 (1992) 147158.Google Scholar
8. Alman, D.E., Shaw, K.G., Sroloft, N.S., and Rajan, K., Mat. Sci. & Eng. A155 (1992) 85.Google Scholar
9. Mescheter, D.J. and Schwartz, D.S., J. Met., 11 (1984) 52.Google Scholar
10. Siemers, D.A., Jackson, M.R., Mohan, R.L., and Rairden, J.R., Cer. Eng. Soc. Prc., 6 (1985)Google Scholar
11. Tiwari, R., Sampath, S., and Harman, H., Mater. Res. Soc. Sym. Proc., 213 (1991) 807.Google Scholar
12. Henager, C.H. Jr., Brimhall, J.L., and Hirth, J.P., Mat. Sci. & Eng. A155 (1992) 109114.Google Scholar
13. Shobu, K., Tsuhi, K., and Watanabe, T., Edited by Sorrell, C.C. and Ben-Nissan, B., Ceramic Developments, Trans. Tech. Publications, Aedermannsdorf, (1988), p. 675.Google Scholar
14. Brupbacher, J.M., Christodoulou, L., and Nagle, D.C., U.S. Patent 4,710,348, (1987).Google Scholar
15. Christodoulou, L., Nagle, D.C., and Brupbacher, J.M., U.S. Patent 4,774,052, (1988).Google Scholar
16. Nagle, D.C., Brupbacher, J.M., and Christodoulou, L., U.S. Patent 4,916,029, (1990).Google Scholar
17. Shaw, L. and Abbaschian, R., Acta Metall. Mater., Vol. 42, No. 1 (1994) 213223.Google Scholar
18. Vasudevan, A.K. and Petrovic, J.J., Materials Science and Engineering, A155 (1992) 118.Google Scholar
19. Maloney, M.J. and Hecht, R.J., Materials Science and Engineering, A155 (1992) 1932.Google Scholar
20. Alman, D.E., Shaw, K.G., Stoloff, N.S. and Rajan, K., Mat. Sci. & Eng. A155 (1992) 85.Google Scholar
21. Henager, C.H. Jr., Brimhall, J.L. and Hirth, J.P., Mat. Sci. & Eng.. A155 (1992) 109114.Google Scholar
22. Petrovic, J.J. and Honnell, R.E., Ceramic Eng. Sci. Proc., 11, (1990) 734744.Google Scholar
23. Mendiratta, M.G. and Dimiduk, D.M., Mater. Res. Soc. Symp. Proc., 133 (1989) 441446.Google Scholar
24. Mendiratta, M.G., Lewandowski, J.J. and Dimiduk, D.M., Metall. Trans. A, 22 (1991) 1573.Google Scholar
25. Kajuch, J., Rigney, J.D., and Lewandowski, J.J., Mat. Sci. & Eng. A155 (1992) 59.Google Scholar
26. Chou, T.C., Nieh, T.G., McAdams, S.D., Pharr, G.M., and Oliver, W.C., J. Mater. Res., Vol. 7, No. 10 (1992) 27742784.Google Scholar
27. Chou, T.C., Neih, T.G., Tsui, T.Y., Pharr, G.M., and Oliver, W.C., J. Mater. Res., Vol. 7, No. 10 (1992) 2765.Google Scholar
28. Lewis, C.F., Materials Engineering, Oct.(1990) 31–.34Google Scholar
29. Nekkanti, R.K. and Dimiduk, D.M., Mater. Res. Soc. Sym. Proc., 194 (1990) 175182.Google Scholar
30. Ivan’ko, A.A., Handbook of Hardness Data, Edited by Samsonov, G.V., Israel Prog. for Scientific Translation, Jerusalem (1971).Google Scholar
31. Milman, Y., Galanov, B. and Chugunova, S.I., Acta Met Mater., Vol. 41, No. 9 (1993) 2523.Google Scholar
32. Rice, R.W., The Science of Hardness Testing and its Research Applications, Edited by Westbrook, J.H. and Conrad, H., ASM, Metals Park, OH (Oct. 1971).Google Scholar
33. Tabor, D., The Hardness of Metals, Clarended Press, Oxford (1951).Google Scholar