Skip to main content Accessibility help
×
Home

Mechanical Properties and Fracture Dynamics of Silicene Membranes

  • Tiago Botari (a1), Eric Perim (a1), P. A. S. Autreto (a1), Ricardo Paupitz (a2) and Douglas S. Galvao (a1)...

Abstract

The advent of graphene created a new era in materials science. Graphene is a two-dimensional planar honeycomb array of carbon atoms in sp2-hybridized states. A natural question is whether other elements of the IV-group of the periodic table (such as silicon and germanium), could also form graphene-like structures. Structurally, the silicon equivalent to graphene is called silicene. Silicene was theoretically predicted in 1994 and recently experimentally realized by different groups. Similarly to graphene, silicene exhibits electronic and mechanical properties that can be exploited to nanoelectronics applications.

In this work we have investigated, through fully atomistic molecular dynamics (MD) simulations, the mechanical properties of single-layer silicene under mechanical strain. These simulations were carried out using a reactive force field (ReaxFF), as implemented in the LAMMPS code. We have calculated the elastic properties and the fracture patterns.

Our results show that the dynamics of the whole fracturing processes of silicene present some similarities with that of graphene as well as some unique features.

Copyright

References

Hide All
1. Carbon Nanotube Science, Peter J. F. Harris, Cambridge University Press, Cambridge(2009).
2. Baughman, R., Eckhardt, H., Kertesz, M., J. Chem. Phys. 87, 6687 (1987).
3. Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Phys. Rev. B 68, 035430 (2003).
4. Coluci, V. R., Braga, S. F., Legoas, S. B., Galvao, D. S., and Baughman, R. H., Nanotechnology 15, S142 (2004).
5. Novoselov, K. S. et al. ., Science 306, 666 (2004).
6. Cheng, S. H. et al. ., Phys. Rev. B 81, 205435 (2010).
7. Withers, F., Duboist, M., and Savchenko, A. K., Phys. Rev. B 82, 073403 (2010).
8. Takeda, K. and Shiraishi, K., Phys. Rev. B 50, 14916 (1994).
9. Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., and Ciraci, S., Phys. Rev. Lett. 102, 236804 (2009).
10. Nakano, H. et al. ., Angew. Chem. 118, 6451 (2006).
11. Lalmi, B. et al. ., Appl. Phys. Lett. 97, 223109 (2010).
12. Psofogiannakis, G. M. and Froudakis, G. E., J. Phys. Chem. C 116, 19211 (2012).
13. Aufray, B. et al. ., Appl. Phys. Lett. 96, 183101 (2010).
14. de Padova, P, et al. ., Appl. Phys. Lett. 96, 261905 (2010).
15. Vogt, P. et al. ., Phys. Rev. Lett. 108, 155201 (2012).
16. Bianco, E. et al. ., Nano Lett. 7, 4414 (2013).
17. Friedlein, R., Fleurence, A., Ozaki, T., and Yamada-Takamura, Y., SPIE Newsroom, in press DOI: 10.1117/2.1201305.004854.
18. van Duin, A. C. T., Dasgupta, S., Lorant, F., and Goddard, W. A. III, J. Phys. Chem. A 105, 9396 (2001).
19. Plimpton, S., J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov/.
20. Paupitz, R. et al. ., Nanotechnology 24, 035706 (2013).
21. Yang, Y. and Xu, X., Comp. Mater. Sci. 61, 83 (2012).
22. Pei, Q. X., Zhang, Y. W., and Shenoy, V. B., Carbon 48, 898 (2010).
23. Kim, K. et al. ., Nano Lett. 12, 293 (2011).
24. Koskinen, et al. ., Phys. Rev. Lett. 101, 115502 (2008).
25. Koskinen, et al. ., Phys. Rev. B 80, 073401 (2009).

Keywords

Mechanical Properties and Fracture Dynamics of Silicene Membranes

  • Tiago Botari (a1), Eric Perim (a1), P. A. S. Autreto (a1), Ricardo Paupitz (a2) and Douglas S. Galvao (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed