Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T16:11:29.132Z Has data issue: false hasContentIssue false

Mechanical Processing in Hydrogen Storage Research and Development

Published online by Cambridge University Press:  31 January 2011

Viktor P Balema*
Affiliation:
vbalema@sial.comvbalema@yahoo.com
Get access

Abstract

The article addresses an experimental approach, which proved to be indispensable in basic and applied hydrogen storage R&D—the preparation and modification of hydrogen-rich materials using mechanical processing. A possible mechanism of mechanically induced transformations in solid materials is highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nocera, D. Chem. Sus. Chem., 2, 387(2009).Google Scholar
2http://www.hydrogen.energy.gov/annual_progress08.html (At the date this paper was written, URLs referenced herein was deemed to be useful supplementary material to this paper. Neither the author nor the Materials Research Society warrants or assumes liability for the content or availability of URLs referenced.)Google Scholar
3 Read, C. Thomas, G. Ordaz, G. Satypal, S. Material Matters, 2.2, 3(2007).Google Scholar
4 Heinicke, G. Tribochemistry; Academie Verlag: Berlin, 1984 Google Scholar
5 Suryanarayana, C. Progr. Materials Sci., 46, 1(2001).Google Scholar
6 Balema, V.P. Balema, L. Phys. Chem. Chem. Phys. 7, 1310(2005).Google Scholar
7 Orimo, S. Nakamori, Y. Eliseo, J.R. Züttel, A., Jensen, C.M. Chem. Rev. 107, 4111(2007).Google Scholar
8 Grochala, W. Edwards, P. Chem. Rev. 104, 1283(2004).Google Scholar
9 Balema, V.P. Wiench, J.W. Dennis, K.W. Pruski, M. Pecharsky, V.K. J. Alloys Compd. 329, 108(2001).Google Scholar
10 Bowman, R.C. Hwang, S.J. Material Matters, 2.2, 29(2007).Google Scholar
11 Maurice, D.R. Courtney, T. H. Metall. Trans. A 21A, 289(1990).Google Scholar
12 Maurice, D.R. Courtney, T. H. Metall. Trans. A 26A, 2432(1995).Google Scholar
13 Maurice, D.R. Courtney, T. H.. Metall. Trans. A 27A, 1981(1996).Google Scholar
14 Koch, C. C. Int. J. Mechanochem. Mech. Alloying 1, 56(1994).Google Scholar
15 High Pressure Molecular Science, NATO Science Series, E358; Ed. Winter, R.; Jonas, J.; Kluwer Academic Publishers: Dordrecht, Boston, London, 1999.Google Scholar
16 Komatsu, K. Top. Curr. Chem. 254, 185(2005).Google Scholar
17 Dymova, T.N. Aleksandrov, D.P. Konoplev, V.N. Silina, T. Kuznetsov, N.T. Russian J. Coord. Chem. 19, 491(1993).Google Scholar
18 Chaudhuri, S. Graetz, J. Ignatov, A. Reilly, J.J. Muckerman, J.T. J. Am. Chem. Soc., 128, 11404(2006).Google Scholar
19 Bellosta, J.M. von Colbe, Felderhoff, M. Bogdanovic, B., Schüth, F., Weidenthaler, C. Chem. Commun. 4732(2005).Google Scholar
20 Kojima, Y. Kawai, T. Haga, T. Matsumoto, M. Koiwai, A. J. Alloys Compds. 441, 189(2007).Google Scholar
21 Hout, J. Boily, S. Gunther, V. Schulz, R. J. Alloys Compds. 283, 304(1999).Google Scholar
22 Balema, V.P. Pecharsky, V.K. Dennis, K.W. J. Alloys Compds. 313, 69(2000).Google Scholar
23 Volkov, V.V. Myakishev, K.G. Inorg. Chim. Acta 289, 51(1999).Google Scholar
24 Xiong, Zh. Yong, Ch. K. Wu, G. Chen, P. Shaw, W. Karkamkar, A. Autrey, T. Jones, M.O. Johnson, S.R. Edwards, P.P. W. David, I. F. Nature Materials, 7, 138(2008).Google Scholar
25 Chen, S. Williams, J. Mater. Sci. For 225/227; TransTech Publications Inc.: Stafa-Zurich, 1996; p 881.Google Scholar
26 Mamathab, M. Bogdanovic, B. Felderhoff, M. Pommerin, A. Schmidt, W. Schüth, F., Weidenthaler, F. J. Alloys Compds, 407, 78(2006).Google Scholar
27 Chlopek, K. Frommen, C. Leon, A. Zabara, O. Fichtner, M. J. Mart.Chem. 17, 3496(2007).Google Scholar
28 Brinks, H.W. A. Istad-Lem, Hauback, B.C. J. Phys. Chem. 110, 25833(2006).Google Scholar
29 Chen, J. Takeshita, H.T. Chartouni, D. Kuriyama, N. Sakai, T. J. Mater. Sci. 36, 5829(2001).Google Scholar
30 Herberg, J.L. Maxwell, R.S. Majzoub, E.H. J. Alloys Compds. 417, 39(2005).Google Scholar
31 Balema, V.P. Dennis, K.W. Pecharsky, V.K. Chem. Commun. 1665(2000).Google Scholar
32 Charbonnier, J. P. de Rango, Fruchart, D. Miraglia, S. Pontonnier, L. Rivoirard, S. Skryabina, N. Vulliet, P. J. Alloys Compds. 383, 205(2004).Google Scholar
33 Iosub, V. Matsunaga, T. Tange, K. Ishikiriyama, M. Miwa, K. J. Alloys Compds. 484, 426(2009).Google Scholar
34 Zhang, J. Yan, W. Bai, C. Pan, F. J. Mat. Res. 24, 2880(2009).Google Scholar
35 Kim, C. S.J.Hwang, Bowman, R.C. Reiter, J. W. Zan, J.A., Kulleck, J. G. Kabbour, H. Majzoub, E.H. Ozolins, V. J. Phys. Chem. C 113, 9956(2009).Google Scholar
36 Ichikawa, T. Leng, H.Y. Isobe, S. Hanada, N. Fujii, H. J. Power Sources 159, 126(2006).Google Scholar
37 Kuroda, R. Yoshida, J. Nakamura, A. Nishikiori, Sh.-i., CrystEngComm. 11, 427(2009).Google Scholar
38 Braga, D. Grepioni, F. Chem. Commun. 3635(2005).Google Scholar
39 Oehzelt, M. Resel, R. Phys. Rev. B. 66, 174104(2002).Google Scholar
40 Politov, A.A. Fursenko, B.A. Boldyrev, V.V. Doklady Phys. Chem. 371, 28(2000).Google Scholar
41 Dolotko, A. Wiench, J.W. Dennis, K. V.K.Pecharsky, Balema, V.P. New J. Chem. DOI:10.1039/B9NJ00588A(2009)Google Scholar
42 Balema, V.P. Wiench, J.W. Pruski, M. Pecharsky, V.K. Chem. Commun. 724(2002).Google Scholar
43 Rothenberg, G. Downie, A.P. Raston, C.L. Scott, J.L. J. Am. Chem. Soc. 123, 8701(2001).Google Scholar