Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T05:51:29.778Z Has data issue: false hasContentIssue false

Mechanical Behavior of Microwave Processed Polymer Matrix Composites: the Effect Of The Temperature Increase Rate

Published online by Cambridge University Press:  10 February 2011

M. Delmotte
Affiliation:
Laboratoire Microstructure et Mécanique des Matériaux, CNRS URA 1219, ENSAM, 151 blvd. de l'Hôpital, 75013 Paris, France.
J. Fitoussi
Affiliation:
Laboratoire Microstructure et Mécanique des Matériaux, CNRS URA 1219, ENSAM, 151 blvd. de l'Hôpital, 75013 Paris, France.
J. Toftegaard-Hansen
Affiliation:
Laboratoire Microstructure et Mécanique des Matériaux, CNRS URA 1219, ENSAM, 151 blvd. de l'Hôpital, 75013 Paris, France.
C. More
Affiliation:
Laboratoire Microstructure et Mécanique des Matériaux, CNRS URA 1219, ENSAM, 151 blvd. de l'Hôpital, 75013 Paris, France.
H. Jullien
Affiliation:
Laboratoire Microstructure et Mécanique des Matériaux, CNRS URA 1219, ENSAM, 151 blvd. de l'Hôpital, 75013 Paris, France.
D. Baptiste
Affiliation:
Laboratoire Microstructure et Mécanique des Matériaux, CNRS URA 1219, ENSAM, 151 blvd. de l'Hôpital, 75013 Paris, France.
Get access

Abstract

Microwave processed glass reinforced epoxies or glass reinforced polyesters exhibit mechanical behaviors different from conventionally cured materials, relatively to tensile tests. The faster increases of temperature due to microwaves cause a competition between the matrix flow and the crosslinking reaction which can be estimated by porosity variations. Higher mechanical moduih are also obtained, because of both an effect on chemical kinetics and a more homogenous distribution of temperature in materials. Nevertheless, to provide such specific mechanical behaviors in microwave processed composite materials, a best control of the experimental pressure parameters is requested.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, W.I. and Springer, G.S., J. Compos. Mater. 18, p. 357 (1984).Google Scholar
2. Gourdenne, A., Maassarani, A.H., Monchaux, P., Aussudre, S. and Thourel, P., Polym. Prepr. 20(2), p. 471 (1979).Google Scholar
3. Thuillier, F.M., Jullien, H. and Grenier-Loustalot, M.F., Polymer Communic. 25, p. 206 (1986).Google Scholar
4. Delmotte, M., Jullien, H. and Ollivon, M., Eur. Polymer J. 27, p. 371 (1991).Google Scholar
5. Lewis, D.A., Summers, J.D., Ward, T.C. and MacGrath, J.E., J. Polymer Sci., part A: Polymer Chemistry 30, p. 1647 (1992).Google Scholar
6. Mijovic, J. and Wijaya, J., Macromolecules 23, p. 3671 (1990).Google Scholar
7. Wet, J., Hawley, M C., DeMeuse, M T, Polym. Mater. ScL Eng. 66, p. 478 (1992).Google Scholar
8. Outifa, L., Jullien, H. and Delmotte, M., Polym. Mater. Sci. Eng. 66, p. 424 (1992).Google Scholar
9. Outifa, L., Moré, C., Jullien, H., Delmotte, M., Ind. Eng. Chem. Res. 34, p. 688 (1995).Google Scholar
10. Jordan, C., Galy, J., Pascault, J.P., Moré, C., Delmotte, M. and Jullien, H., Polym. Eng. Sci 35, p. 240 (1995).Google Scholar
11. Shu-Lin, Bai, PhD Thesis, Ecole Centrale de Paris, Paris, 1993.Google Scholar
12. Sih, G.C. and Skudra, A.M., Failure mechanics of composites (North Holland, 1983).Google Scholar