Skip to main content Accessibility help
×
Home

Mechanical and Electrical Reliability of a Chronically Implanted Metal-Polyimide Electrode Array

  • John D. Yeager (a1), Derrick J. Phillips (a2), David M. Rector (a3) and David F. Bahr (a4)

Abstract

A flexible electrode array consisting of a thin metal film on a polymer substrate has been developed for neural implantation in rats. The biocompatible arrays record cortical brain signals from awake and mobile rats in order to gather significant neurological data. Four point bend testing of the metal-Kapton system has been used to characterize the interfacial toughness, and therefore the mechanical durability, of the array. Several different adhesion layers on were evaluated using this method. Use of a titanium-tungsten interlayer increases the mixed-mode fracture toughness from approximately 1 J/m2 to approximately 2 J/m2, while a titanium interlayer provides a toughness of more than 4 J/m2. Gold-Kapton arrays were implanted in rats for periods exceeding 200 days, and neural recordings were taken frequently. The arrays exhibit excellent long-term reliability, with no decrease in signal recording capability over the course of the implantation.

Copyright

References

Hide All
1. Jones, M.S. and Barth, D.S.. Spatiotemporal organization of fast (>200Hz) electrical oscillations in rat vibrissa/barrel cortex. Journal of Neurophysiology 82, 3 (1999) 1599–609
2. Strumwasser, F.. Long-Term Recording from Single Neurons in Brain of Unrestrained Mammals. Science 127 (1958) 469–70
3. Polikov, V.S., Tresco, P.A., and Reichert, W.M.. Response of brain tissue to chronically implanted neural electrode. Journal of Neuroscience Methods 148 (2005) 118
4. Hollenberg, B.A., Richards, C.D., Richards, R., Bahr, D.F., and Rector, D.M.. A MEMS fabricated flexible electrode array for recording surface field potentials. Journal of Neuroscience Methods 153, 1 (2006) 147–53
5. Yeager, J.D, Phillips, D.J., Rector, D.M., and Bahr, D.F.. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. Journal of Neuroscience Methods 173, 2 (2008) 279–85
6. Stieglitz, T., Beutel, H., Schuettler, M., and Meyer, J.. Micromachined, polyimide-based devices for flexible neural interfaces. Biomedical Microdevices 2, 4 (2000) 283–94
7. Huang, Z., Suo, Z., Xu, G., He, J., Prévost, J.H., and Sukumar, N.. Initiation and arrest of an interfacial crack in a four-point bend test. Engineering Fracture Mechanics 72 (2005) 2584–601
8. Litteken, C.S., Strohband, S., and Dauskardt, R.H.. Residual stress effects on plastic deformation and interfacial fracture in thin-film structures. Acta Materialia 53 (2005) 1955–61
9. Suo, Z., Hutchinson, J.W.. On sandwiched test specimens for measuring interface crack toughness. Materials Science & Engineering A 107 (1989) 135–43.

Keywords

Mechanical and Electrical Reliability of a Chronically Implanted Metal-Polyimide Electrode Array

  • John D. Yeager (a1), Derrick J. Phillips (a2), David M. Rector (a3) and David F. Bahr (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed