Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-20T05:54:51.163Z Has data issue: false hasContentIssue false

Mechanical and Chemical Properties of CBxNy and CSixNy Thin Films Grown by N*-Plasma Assisted Pulsed Laser Deposition

Published online by Cambridge University Press:  10 February 2011

T. Thärigen
Affiliation:
Univ. of Leipzig, Faculty of Physics and Earth Science, Linnéstr.5, D-04103 Leipzig, Germany
V. Riede
Affiliation:
Univ. of Leipzig, Faculty of Physics and Earth Science, Linnéstr.5, D-04103 Leipzig, Germany
G. Lippold
Affiliation:
Institute for Surface Modification, Permoserstr. 15, D-04303 Leipzig, Germany
E. Hartmann
Affiliation:
Institute for Surface Modification, Permoserstr. 15, D-04303 Leipzig, Germany
R. Hesse
Affiliation:
Univ. of Leipzig, Faculty of Chemistry and Mineral., Linnéstr. 2, D-04103 Leipzig, Germany
P. Streubel
Affiliation:
Univ. of Leipzig, Faculty of Chemistry and Mineral., Linnéstr. 2, D-04103 Leipzig, Germany
D. Lorenz
Affiliation:
Martin-Luther-University Halle-Wittenberg, Dept. of Physics, Friedemann-Bach-Platz 6, D-06108 Halle/S., Germany.
P. Grau
Affiliation:
Martin-Luther-University Halle-Wittenberg, Dept. of Physics, Friedemann-Bach-Platz 6, D-06108 Halle/S., Germany.
M. Lorenz
Affiliation:
Univ. of Leipzig, Faculty of Physics and Earth Science, Linnéstr.5, D-04103 Leipzig, Germany
Get access

Abstract

Carbon silicon nitride (CSixNy), and carbon boron nitride (CBxNy) thin films have been grown by pulsed laser deposition (PLD) of various carbon (silicon/boron) (nitride) targets using an additional nitrogen RF plasma source on [100] oriented silicon substrates without additional heating. The CSixNy and CBxNy thin films were amorphous and showed nano hardness up to 23 GPa compared to 14 GPa for silicon and maximum nitrogen content of 30 at%. The maximum nanohardness was achieved for 10% Si and 10% B content in the films. The lower hardness of this films compared to the nanohardness of 30-50 GPa of DLC films indicates a lower amount of covalent carbon-nitrogen bonding in the films. However, in contrast to DLC films, the CSixNy and CBxNy films can be grown to thickness above 3 μm due to lower internal compressive stress. XPS of CSixNy and CBxNy film surfaces shows clear correlation of binding energy and intensity of N ls, C ls, and Si 2p peaks to composition of the PLD-targets and to nitrogen flow through plasma source, indicating soft changes of binding structure due to variation of PLD parameters. The results demonstrate the capability of the plasma assisted PLD process to deposit hard amorphous CSixNy, and CBxNy thin films with adjustable properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, A.Y. andCohen, M.L., Phys. Rev. B 41, 10727 (1990)Google Scholar
2. Teter, D.M, MRS Bulletin 23 (1), 22 (1998)Google Scholar
3. Marton, D., Boyd, K.J., Al-Bayati, A.H., Todorov, S.S., and Rabalais, J.W., Phys. Rev. Lett. 73, 118 (1994)Google Scholar
4. Sung, C.M., andSung, M., Mater. Chem. Phys. 43, 1 (1996)Google Scholar
5. Badzian, A., and Badzian, T., Int. J. Refractory Metals Hard Mater. 15, 3 (1997)Google Scholar
6. Zhigang, H., Carter, G., andColligon, J.S., Thin Solid Films 283, 90 (1996)Google Scholar
7. Thärigen, T., Lippold, G., Riede, V., Lorenz, M., Koivusaari, K.J., Lorenz, D., Mosch, S., Grau, P., Hesse, R., Streubel, P., andSzargan, R., Thin Solid Films 348, 103 (1999)Google Scholar
8. Thärigen, T., Mayer, D., Hesse, R., Hesse, R., Streubel, P., Lorenz, D., Grau, P., Lorenz, M., andSzargan, R., Fresenius J. Anal. Chem. 365, 244 (1999)Google Scholar
9. Thärigen, T., Lorenz, M., Koivusaari, K.J., Streubel, P., Hesse, R., andSzargan, R., to be published in Appl. Phys. A 69, (1999)Google Scholar
10. Liu, A.Y., Wentzcovitek, R.M., andCohen, M.L., Phys. Rev. B 39, 1760 (1989)Google Scholar
11. Lambrecht, W.R.L. andSegall, B., Phys. Rev. B 47, 9289 (1993)Google Scholar
12. Tateyama, Y., Ogitsu, T., Kusakabe, K., Tsuneyuki, S., andItoh, S., ibid. 55, 10161 (1997)Google Scholar
13. Ulrich, S., Erhardt, H., Theel, T., Schwan, J., Westermeyr, S., Scheib, M., Becker, P., Oechsner, H., Dollinger, G., andBergmaier, A., Diamond and Related Materials 7, 839 (1998)Google Scholar
14. Pulsed Laser Deposition of Thin Films, edited Chrisey, D.B. and Hubler, G.K. (John Wiley&Sons, New York, 1994)Google Scholar
15. Lorenz, M., Hochmuth, H., Natusch, D., Börner, H., Kreher, K., Schitz, W., Appl. Phys. Lett. 68, 3332 (1996)Google Scholar
16. Bousetta, A., Badi, N., Bensaoula, A., and Lu, M. in Applications of Diamond Films and Related Materials: Third International Conference edited by Feldman, A., Tzeng, Y., Yarbrough, W.A., Yoshikawa, M. and Murakawa, M., pp. 877880 (1995)Google Scholar
17. Perrone, J., Caricato, A.P., Luches, A., Dinescu, M., Ghica, C., Sandu, V., andAndrei, A., Applied Surface Science 133, 239 (1998)Google Scholar
18. Yu, J., Wang, E.G., andXu, G., J. Mater. Res. 14, 1137 (1999)Google Scholar
19. Widmayer, P., et al., Phys. Rev. B 59 (7), 5233 (1999)Google Scholar
20. Gimeno, S., Munoz, J.C., andLousa, A., Diamond and Related Materials 7, 853 (1998)Google Scholar
21. Ulrich, S., Schere, J., Schwan, J., Barzen, I., Jung, K. andEhrhardt, H., Diamond and Related Materials 4, 288 (1995)Google Scholar