Skip to main content Accessibility help
×
Home

Measuring Thin Film Fracture Toughness Using the Indentation Sinking-in Effect and Focused Ion Beam

  • Ting Y. Tsui (a1) and Young-Chang Joo (a2)

Abstract

A new experimental technique is developed to measure the fracture toughness of a hard metal thin film deposited on a soft substrate. A pre-crack was fabricated in the thin film by using the advanced focused ion beam (FIB) milling techniques. The crack extension force was generated by means of the indentation sinking-in effect. The effect creates a bending moment and tensile stress on the hard thin film near the indentation, which promotes crack growth. The amount of crack tip blunting prior to the critical failure was measured from the FIB cross-sectioned micrographs. By using the crack tip opening displacement model (CTOD), the fracture toughness of the thin film was calculated. The results show the nickel phosphorus (NiP) thin film fracture toughness is at least 15.0MPa√m. The finite element method (FEM) was used to understand the modes of mixity near the crack tip. The results indicate the crack tip modes of mixity are dominated by the Mode I opening, provided the indentation is sufficiently far from the pre-crack or the indentation depths is small when compared with the film thickness.

Copyright

References

Hide All
1. Doerner, M.F. and Nix, W.D., CRC Critical Reviews in Solid State and Materials Science, 14(3), 225268, (1988).
2. Nix, W.D., Metallurgical Transactions A, 20A, 22172245, (1989).
3. Venkatraman, R. and Bravman, J.C., J. Mater. Res, 7(8), 20402048, (1992).
4. Flinn, P.A. and Chiang, C., J. App. Phys., 67(6), 29272931, (1990).
5. Oliver, W.C., McHargue, C.J., and Zinkle, S.J., Thin Solid Films, 153, 185196, (1987).
6. Pharr, G.M., Callahan, D.L., McAdams, S.D., Tsui, T.Y., Anders, S., Anders, A., Ager, J.W. III, Brown, I.G., Appl. Phys. Lett, 68(6), 779781, (1996).
7. Tsui, T.Y. and Pharr, G.M., J. Mater. Res., Vol 14, no. 1,292301(1999)
8. Tsui, T.Y., Vlassak, J., and Nix, W.D., J. Mater. Res., Vol 14, no. 6, 21962203 (1999)
9. Tsui, T.Y., Vlassak, J., and Nix, W.D., J. Mater. Res., Vol 14, no. 6, 22042209 (1999)
10. Tsui, T.Y., Ross, C.A., and Pharr, G.M., Mat. Res. Soc. Symp. Proc., 473, 5156, (1997).
11. Tsui, T.Y., Ross, C.A., and Pharr, G.M., Mat. Res. Soc. Symp. Proc., 473, 5762, (1997).
12. Gorbatkin, S.M., , S.M., Rhodes, R.L., Tsui, T.Y., Oliver, W.C., Appl. Phys. Lett., 65(21), (1994).
13. Dauskardt, R. and Ager, J., Acta Materialia, 44(2), 625641, (1996).
14. Wetzel, C., Suski, T., Ager, J.W., Weber, E.R., Haller, E.E., Fischer, S., Meyer, B.K., Molnar, R.J., Perlin, P., Physical Review Letters, 78(20), 39233926, (1997).
15. Kisielowski, C., Kruger, J., Ruvimov, S., Suski, T., Ager, J.W., Jones, E., Lilientalweber, Z., Rubin, M., Weber, E.R., Bremser, M.D., Davis, R.F.. Physical Review B -Condensed Matter, 54(24), 1774517753, (1996).
16. Anderson, T.L., Fracture Mechanics - Fundementals and Applications, 2nd Ed, CRC Press, 1995.
17. Hutchinson, J.W., J. Mech. Phys. Solids, Vol. 16, 1331, (1969).
18. Rice, J.R., J. Appl. Mech., 379386, (1968).
19. Rice, J.R. and Rosengren, G.F., J. Mach. Phys. Solids, Vol. 16, 112, (1968).
20. Burdekin, F.M. and Stone, D.E.W., Journal of Strain Analysis, Vol. 1, 145153, (1966).
21. Hay, J.C. and Pharr, G.M., Thin Films Stresses and Mechanical Properties VII Mater. Res. Soc. Symp. Proc. 505, 6570, 1998.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed