Skip to main content Accessibility help
×
Home

Measurements of the Refractive Indices of MOCVD and HVPE Grown AlGaN Films Using Prism-Coupling Techniques Correlated with Spectroscopic Reflection/Transmission Analysisa

  • Norman A. Sanford (a1), Lawrence H. Robins (a2), Albert V. Davydov (a2), Alexander J. Shapiro (a2), Denis V. Tsvetkov (a3), Vladimir A. Dmitriev (a3), Silver Spring (a4), Stacia Keller (a5), Umesh K. Mishra (a5) and Steven P. DenBaars (a5)...

Abstract

Waveguide prism-coupling methods were used to measure the ordinary and extraordinary refractive indices of Al x Ga1-x N films grown on sapphire substrates by HVPE and MOCVD. Several discrete wavelengths ranging from 442 nm to 1064 nm were used and the results were fit to one-term Sellmeier equations. The maximum standard uncertainty in the refractive index measurements was ± 0.005 and the maximum standard uncertainty in the self-consistent calculation for film thickness was ± 15 nm. Analysis of normal-incidence spectroscopic transmittance and reflectance measurements, correlated with the prism-coupling results, was used to determine the ordinary refractive index as a continuous function of wavelength from the band gap wavelength of each sample (between 252 nm and 364 nm) to 2500 nm. The Al compositions of the samples were determined using energy-dispersive X-ray spectroscopy analysis (EDS). HVPE grown samples had compositions x = 0.279, 0.363, 0.593, and 0.657. MOCVD samples had x = 0.00, 0.419, 0.507, 0.618, 0.660, and 0.666. The maximum standard uncertainty in the absolute EDS-determined value for x was ± 0.02.

Copyright

References

Hide All
1. Lin, M. E., Sverdov, B. N., Strite, S., Morkoç, H., and Drakin, A. E., Elect. Lett. 29, 1759 (1993).
2. Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Höpler, R., Dimitrov, R., Ambacher, O., and Stutzmann, M., J. Appl. Phys. 82, 5090 (1997).
3. Yu, G., Ishikawa, H., Egawa, T., Soga, T., Watanabe, J., Jimbo, T., and Umeno, M., Jpn. J. Appl. Phys. 36, L 1029 (1997).
4. Yu, G., Wang, G., Ishikawa, H., Umeno, M., Soga, T., Egawa, T., Wantanabe, J., and Jimbo, T., Appl. Phys. Lett. 70, 3209 (1997).
5. Goldhahn, R., Shokhovets, S., Scheiner, J., Gobsch, G., Cheng, T. S., Foxon, C. T., Kaiser, U., Kiphidze, G. D., and Richter, W., Phys. Stat. Sol. (a) 177, 107 (2000).
6. Ulrich, R. and Torge, R., Appl. Opt. 12, 2901 (1973).
7. Bergman, M. J., Özgür, Ü., Casey, H. C. Jr, Everitt, H. O., and Muth, J. F., Appl. Phys. Lett. 75, 67 (1999).
8. Özgür, Ü., Webb-Wood, G., Everitt, H. O., Yun, F., and Morkoç, H., Appl. Phys. Lett. 79, 4103 (2001).
9. Sanford, N. A., Robins, L. H., Davydov, A. V., Shapiro, A., Tsvetkov, D. V., Dmitriev, A. V., Keller, S., Mishra, U. K., and DenBaars, S. P., submitted for publication.
10. Taylor, B. N. and Kuyatt, C. E., NIST Technical Note 1297, 1994 Edition.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed