Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T00:15:35.736Z Has data issue: false hasContentIssue false

Measurement of Crystal Lattice Rotations under Nanoindents in Copper

Published online by Cambridge University Press:  01 February 2011

Kirsten K. McLaughlin
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
Nadia A. Stelmashenko
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
Stephen J. Lloyd
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
Luc J. Vandeperre
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
William J. Clegg
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
Get access

Abstract

A technique is described to measure the rotations of the crystal lattice in the deformed region around a nanoindent from volumes smaller than 3 × 10−5 μm3. To demonstrate this method, a copper crystal has been indented on its (001) face to depths of 500 and 1300 nm. Cross-sections of nanoindents were prepared for transmission electron microscopy by focused ion beam milling, and rotations were measured about the [001], [010] and [100] axes using convergent beam electron diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, K.L., Contact Mechanics. (Cambridge University Press, Cambridge, 1985) p. 174.Google Scholar
2. Wang, Y., Raabe, D., Klüber, C. and Roters, F.. Acta mater. 52, 2229 (2004).Google Scholar
3. Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W.. Acta metall. mater. 42, 475 (1994).Google Scholar
4. Gao, H., Huang, Y. and Nix, W.D.. Naturwissenchaften. 86, 507 (1999).Google Scholar
5. Jayaweera, N.B., Downes, J.R., Frogley, M.D., Hopkinson, M., Bushby, A.J., Kidd, P., Kelly, A. and Dunstan, D.J.. Proc. Roy. Soc. Lond. A. 459 (2036), 2049 (2003).Google Scholar
6. Read, D., Geiss, R., Ramsey, J., Scherban, T., Xu, G., Blane, J., Miner, B. and Emery, R. D. in Mechanical Properties Derived from Nanostructuring Materials, edited by Bahr, D.F., Kung, H., Moody, N.R. and Wahl, K.J., (Mater. Res. Soc. Symp. Proc. 778, San Francisco CA, 2003) pp. 9398.Google Scholar
7. Stelmashenko, N.A., Walls, M.G., Brown, L.M. and Milman, Yu. V.. Acta metall. mater. 41 (10), 2855 (1993).Google Scholar
8. Harvey, S., Huang, H., Venkataraman, S. and Gerberich, W.W.. J. Mater. Res. 8 (6), 1291 (1993).Google Scholar
9. Zielinski, W., Huang, H. and Gerberich, W.W.. J. Mater. Res. 8 (6), 1300 (1993).Google Scholar
10. Stelmashenko, N.A. and Brown, L.M.. Phil. Mag. 74 (5), 1195 (1996).Google Scholar
11. Nye, J.F.. Acta metall. 1, 153 (1953).Google Scholar
12. Yang, W., Larson, B.C., Pharr, G.M., Ice, G.E., Budai, J.D., Tischler, J.Z. and Liu, W.. J. Mater. Res. 19 (1), 66 (2004).Google Scholar
13. Yang, W., Larson, B.C., Tischler, J.Z., Ice, G.E., Budai, J.D. and Liu, W.. Micron. 35, 431 (2004).Google Scholar
14. Lloyd, S. J., Molina-Aldareguia, J. M. and Clegg, W. J.. Philos. Mag. A. 82 (10), 1963 (2002).Google Scholar
15. Wang, S.C. and Starink, M.J.. J. Microsc. 211 (2), 130 (2003).Google Scholar