Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T17:59:29.850Z Has data issue: false hasContentIssue false

Maximum Entropy Method Charge Density Distributions of Novel Thermoelectric Clathrates

Published online by Cambridge University Press:  10 February 2011

B. Iversen
Affiliation:
Dept. of Chemistry, University of Aarhus, Århus, Denmark
A. Bentien
Affiliation:
Dept. of Chemistry, University of Aarhus, Århus, Denmark
A. Palmqvist
Affiliation:
Dept. of Applied Surface Chemistry, Chalmers University of Technology, Göteborg, Sweden
D. Bryan
Affiliation:
Dept. of Chemistry, University of California, Santa Barbara, CA, USA
S. Latturner
Affiliation:
Dept. of Chemistry, University of California, Santa Barbara, CA, USA
G.D. Stucky
Affiliation:
Dept. of Chemistry, University of California, Santa Barbara, CA, USA
N. Blake
Affiliation:
Dept. of Chemistry, University of California, Santa Barbara, CA, USA
H. Metiu
Affiliation:
Dept. of Chemistry, University of California, Santa Barbara, CA, USA
G. S. Nolas
Affiliation:
R&D Division, Marlow Industries Inc, Dallas, Texas, USA
D. Cox
Affiliation:
NSLS, Brookhaven National Laboratory, Upton, NY, USA
Get access

Abstract

Recently materials with promising thermoelectric properties were discovered among the clathrates. Transport data has indicated that these materials have some of the characteristics of a good thermoelectric, namely a low thermal conductivity and a high electrical conductivity. Based on synchrotron powder and conventional single crystal x-ray diffraction data we have determined the charge density distribution in Sr8Ga16Ge3O using the Maximum Entropy Method. The MEM density shows clear evidence of guest atom rattling, and this contributes to the reduction of the thermal conductivity. Analysis of the charge distribution reveals that Sr8Ga16Ge30 contains mixed valence alkaline earth guest atoms. The Sr atoms in the small cavities are, as expected, doubly positively charged, whereas the Sr atoms in the large cavities appear negatively charged. The MEM density furthermore suggests that the Ga and Ge atoms may not be randomly disordered on the framework sites as found in the conventional leastsquares refinements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] DiSalvo, F. J., Science, 285, 703706 (1999)10.1126/science.285.5428.703Google Scholar
[2] Nolas, G. S., Cohn, J. L., Slack, G. A., Schjuman, S. B., Appl. Phys. Lett. 73, 178 (1998)10.1063/1.121747Google Scholar
[3] Bader, R. F. W., Atoms in molecules. A quantum theory. Oxford University Press, 1990.Google Scholar
[4] (a) Iversen, B. B., Larsen, F. K., Figgis, B. N., Reynolds, P. A., Acta Crystallogr. Sect B, 53, 923 (1996). (b) B. B. Iversen, F. K. Larsen, A. A. Pinkerton, A. Martin, A. Darovsky, P. A. Reynolds, Acta Crystallogr. Sect B, 55, 363 (1999).10.1107/S010876819600794XGoogle Scholar
[5] (a) Stewart, R. F., Acta Crystallogr. Sect A, 32, 565 (1976). (b) F. L. Hirshfeld, Isr. J. Chem., 16, 226 (1977). (c) N. K. Hansen, P. Coppens, Acta Crystallogr. Sect A, 34, 909 (1978). (d) B. N. Figgis, P. A. Reynolds, G. A. Williams, J. Chem. Soc. Dalton Trans., 2239 (1980).10.1107/S056773947600123XGoogle Scholar
[6] Coppens, P., x-ray charge densities and chemical bonding, Oxford University Press, 1997.Google Scholar
[7] (a) Collins, D. M., Nature, 298, 49 (1982). (b) M. Sakata, M. Sato, Acta Crystallogr. Sect A, 46, 263 (1990).10.1038/298049a0Google Scholar
[8] Sakata, M., Uno, T., Takata, M., Howard, C. J., J. Appl. Crystallogr., 26, 159 (1993)10.1107/S0021889892010793Google Scholar
[9] (a) Takata, M., Umeda, B., Nishibori, E., Sakata, M., Saito, Y., Ohno, M., Shinohara, H., Nature 377, 46 (1995). b) M. Takata, E. Nishibori, B. Umeda, M. Sakata, E. Yamamoto, H. Shinohara, Phys. Rev. Lett., 78, 3330 (1997). (c) B. B. Iversen, F. K. Larsen, M. Souhassou, M. Takata, Acta Cryst. Sect. B, 51, 580 (1995). (d) R. Y. Vries, W. J. Briels, D. Feil, D. Phys. Rev. Lett, 7, 1719 (1996). (e) P. Roversi, J. J. Irwin, G. Bricogne, Acta Crystallogr. Sect. A., 54, 971 (1998). (f) B. B. Iversen, S. Latturner, G. D. Stucky, Chem. Mat., 11, 2912 (1999)10.1038/377046a0Google Scholar
[10] SHELXTL, version 5; Siemens Industrial Automation, Inc; Madison, WI 1994, USAGoogle Scholar
[11] Chakoumakos, B. C., Sales, B. C., Mandrus, D. G., Nolas, G. S., J. Alloys and Compunds, in press (1999)Google Scholar
[12] Blake, N. P., MØllnitz, L., Kresse, G., Metiu, H., J. Chem. Phys, 111, 3133 (1999)10.1063/1.479615Google Scholar
[13] Skilling, J., Maximum Entropy and Bayesian Methods, edited by Skilling, J., Kluwer Academic Publishers: Dordrecht, 1989, pp. 46.10.1007/978-94-015-7860-8Google Scholar
[14] Kumazawa, S., Kubota, Y., Takata, M., Sakata, M., Ishibashi, Y., J. Appl. Crystallogr., 26, 453 (1993).10.1107/S0021889892012883Google Scholar
[15] Iversen, B. B., Jensen, J. L., Danielsen, J., Acta Cryst. Sect. A, 53, 376 (1997).10.1107/S0108767397000792Google Scholar
[16] (a) Chakoumakos, B. C., Sales, B. C., Mandrus, D., keppens, V., Acta Cryst. Sect. B, 55, 341 (1999). (b) B. C. Sales, B. C. Chakoumakos, D. Madrus, J. W. Sharp, J. Solid State. Chem., 146, 528 (1999)10.1107/S0108768198018345Google Scholar
[17] The thermoelectric figure of merit is defined as ZT = TS2//K, where S is the Seebeck coeffient, σ the electrical conductivity and K the thermal conductivity.Google Scholar
[18] Palmqvist, A. E. C., Iversen, B. B., Fuhrenlid, L. R., Nolas, G. S., Bryan, D., Latturner, S., Stucky, G. D., in Applications of Synchrotron Radiation Techniques to Materials Science V, edited by Stock, S. R., Perry, D. L., Mini, S. M., MRS 1999 Fall Meeting Symposium Proceedings, submittedGoogle Scholar
[19] Iversen, B. B., Nielsen, S. K., Larsen, F. K., Philos. Mag. Sect. A, 72, 1357 (1995).10.1080/01418619508236261Google Scholar