Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-27T22:38:46.311Z Has data issue: false hasContentIssue false

Maximum at ALS: A Powerful Tool to Investigate Open Problems in Micro and Optoelectronics

Published online by Cambridge University Press:  10 February 2011

G. F. Lorusso
Affiliation:
Center of X-ray Lithography, University of Wisconsin, Madison, Wisconsin
H. Solak
Affiliation:
Center of X-ray Lithography, University of Wisconsin, Madison, Wisconsin
S. Singh
Affiliation:
Center of X-ray Lithography, University of Wisconsin, Madison, Wisconsin
P. J. Batson
Affiliation:
Center of X-ray Lithography, University of Wisconsin, Madison, Wisconsin
J. H. Underwood
Affiliation:
Center of X-ray Optics, Lawrence National Berkeley Laboratory, Berkeley, California
F. Cerrina
Affiliation:
Center of X-ray Lithography, University of Wisconsin, Madison, Wisconsin
Get access

Abstract

We present recent results obtained by MAXIMUM at the Advanced Light Source (ALS), at the Lawrence Berkeley National Laboratory. MAXIMUM is a scanning photoemission microscope, based on a multilayer coated Schwarzschild objective. An electron energy analyzer collects the emitted photoelectrons to form an image as the sample itself is scanned. The microscope has been purposely designed to take advantage of the high brightness of the third generation synchrotron radiation sources, and it installation at ALS has been recently completed. The spatial resolution of 100 nm and the spectral resolution of 200 meV make our instrument an extremely interesting tool to investigate current problems in opto- and microelectronics. In order to illustrate the potential of MAXIMUM in these fields, we report new results obtained by studying the electromigration in Al-Cu lines and the Al segregation in AIGaN thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Margaritondo, G. and Cerrina, F., Nucl. Instr. and Meth. A291, 26 (1990).Google Scholar
2. Capasso, C., Ray-Chaudhuri, A. K., Ng, W., Liang, S., Cole, R. K., Wallace, J., Cerrina, F., Margaritondo, G., Underwood, J. H., Kortright, J. K., and Perera, R. C. C., J. Vac. Sci. Technol. A9, 1248 (1991).Google Scholar
3. Seidel, Tom and Zhao, Bin, Mat. Res. Soc. Sym. Proc. 427, 3 (1996)Google Scholar
4. Ames, I., d'Heurle, F.M., and Horstman, R., IBM J. of Res. Develop. 4, 461 (1970)Google Scholar
5. Ng, W., Ray-Chaudhuri, A., Liang, S., Singh, S., Solak, H., Welnak, J., Cerrina, F., Margaritondo, G., Underwood, J., Kortright, J., and Perera, R., Nucl. Instr. and Meth. A347, 422 (1994).Google Scholar
6. Colgan, E.G., and Rodbell, K.P., J. Appl. Phys., 75, 3423, (1994).Google Scholar
7. Nakamura, S., Senoh, M, Iwasa, N., Jpn. J. Appl. Phys. 34, L797 (1995); S. Nakamura, M Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, K. Kiyoku, and W. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996). G. Martin, S. Strite, A. Botchkarev, A. Agarwal, H. Morkoc, W. R. Lambrecht, and B. Segall, Appl. Phys. Lett. 65, 610 (1994).Google Scholar
8. Martin, G., Strite, S., Botchkarev, A., Agarwal, A., Morkoc, H., Lambrecht, W. R., and Segall, B., Appi. Phys. Lett. 65, 610 (1994).Google Scholar