Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-03T05:13:26.249Z Has data issue: false hasContentIssue false

Materials for Reverse Saturable Absorption Optical Limiters

Published online by Cambridge University Press:  15 February 2011

James S. Shirk
Affiliation:
Optical Sciences Division, Naval Research Laboratory, Washington, DC 20375
Richard G. S. Pong
Affiliation:
Optical Sciences Division, Naval Research Laboratory, Washington, DC 20375
Steven R. Flom
Affiliation:
Optical Sciences Division, Naval Research Laboratory, Washington, DC 20375
Michael E. Boyle
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, DC 20375
Arthur W. Snow
Affiliation:
Chemistry Division, Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Systematic studies of the nonlinear optical properties of metallo-organic materials have led to the development of promising new phthalocyanine materials for optical limiting. Several heavy metal substituted phthalocyanines exhibit a strong nonlinear absorption that is useful for optical limiters in the visible. In fast optical systems, other mechanisms, such as the thermal refraction, contribute to the limiting. The spectral window for limiting can by modified by altering the molecular structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shirk, J.S., Lindle, J.R., Bartoli, F.J., Kafafi, Z.H., Snow, A.W., and Boyle, M.E., Intl J. Nonlin. Opt. Phys. 1, 699 (1992)Google Scholar
2. Shirk, James S., Pong, Richard G.S., Bartoli, F. J., and Snow, Arthur W.; Appl. Phys. Lett. 63, 1880 (1993).Google Scholar
3. Coulter, D.R., Miskowski, V.M., Perry, J.W., Wei, T., van Stryland, E.W., and Hagen, D.J., Proc. SPIE 1105, 42 (1989)Google Scholar
4. Perry, J.W., Khundkar, L.R., Coulter, D.R., Alvarez, D., Marder, S.R., Wei, T., Sense, M.J., Stryland, E.W. van, and Hagen, D.J. in “Organic Materials for Nonlinear Optics and Photonics” ed. Messier, J., Kajzar, F., and Prasad, P. NATO ASI ser. E, (Kluwer, Dordrecht, 1991) vol.194, 369 Google Scholar
5. Wei, T., Hagen, D.J., Sense, M.J., Stryland, E.W. van, Perry, J.W., and Coulter, D.R., Appl. Phys. B, 54, 46, (1992)Google Scholar
6. Justus, B.L., Kafafi, Z.H., and Huston, A.L., Opt. Lett. 18, 1603 (1993)Google Scholar
7. Tutt, L.W. and Kost, A., Opt. Lett. 18, 334 (1993)Google Scholar
8. Tutt, L.W. and Kost, A., Nature, 356, 225 (1992)Google Scholar
9. Tutt, L.W. and McCahon, S.W., Opt. Lett. 15, 790 (1990)Google Scholar
10. Sliney, D. and Warbarsht, M., “Safety with Lasers and Other Optical Sensors”, Plenum, New York p78 (1992)Google Scholar
11. Shirk, James S., Pong, Richard G.S., and Bartoli, F.J., unpublished resultsGoogle Scholar
12. The sample transmission was 0.68, the additional loss was due to reflection at the sample windows which were not antireflection coated.Google Scholar
13. Hagen, D.J., Xia, T., Said, A.A., Wei, T.H., and Stryland, E.W. Van; Int'l J. Nonlin. Opt. Phys. 2, 483 (1993). M is referred to as the figure of merit, FOM, or the dynamic range, DR, in this paper.Google Scholar
14. Hercher, M., Appl. Optics 6, 947 (1967)Google Scholar
15. Shirk, James S., Flom, Steven R., Lindle, J.R., Bartoli, F.J., Snow, Arthur W. and Boyle, Michael E.; Proc. Mat. Res. Soc. 328, 661 (1994)Google Scholar
16. Swartzlander, G.A., Justus, B.L., Huston, A.L., and Campillo, A.J.; Int'l. J. Nonlin. Opt. Phys. 2, 577 (1993).Google Scholar
17. Justus, B.L., Huston, A.L., and Campillo, A.J.; Appl. Phys. Lett. 63, 1483 (1993).Google Scholar