Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T14:55:52.795Z Has data issue: false hasContentIssue false

Materials and Structures for Advanced III-HBTs

Published online by Cambridge University Press:  25 February 2011

P. M. Asbeck
Affiliation:
University of California, San Diego, La Jolla, CA
C. W. Tu
Affiliation:
University of California, San Diego, La Jolla, CA
M. C. Ho
Affiliation:
University of California, San Diego, La Jolla, CA
S. L. Fu
Affiliation:
University of California, San Diego, La Jolla, CA
R. C. Gee
Affiliation:
University of California, San Diego, La Jolla, CA
T. P. Chin
Affiliation:
University of California, San Diego, La Jolla, CA
Get access

Abstract

This paper reviews the present status of heterojunction bipolar transistor (HBT) technology based on GaAlAs/GaAs and InP/InGaAs materials, and discusses a variety of approaches for device improvement. Among the possibilities presented are novel structures to reduce base-collector capacitance, and novel materials to increase breakdown voltage and reduce base-emitter turn-on voltage.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khatibzadeh, M.A. et al., Tech. Dig. 1992 Micr. and Mm-wave Monol. Circ. Symp., p. 47.Google Scholar
2. Wang, K.C., Asbeck, P. M., Chang, M.-C.F., Nubling, R. B., Pierson, R. L., Sheng, N.-H., Sullivan, G. J., Yu, J., Chen, A., Clement, D., Tsen, T. C., Basit, H. F., George, J. D., and Young, R., IEEEJ. Sol.-St. Circ., 26, 1669 (1991).Google Scholar
3. Wang, G.-W., Pierson, R. L., Asbeck, P. M., Wang, K.-C., Wang, N.-L., Nubling, R., Chang, M. F., Salerno, J., and Sastry, S., IEEE Electr. Dev. Lett., 12, 347 (1991).Google Scholar
4. Streit, D. C., Oki, A. K., Umemoto, D. K., Velebir, J. R., Stolt, K. S., Yamada, F. M., Saito, Y., Hafizi, M. E., Bui, S., and Tran, L. T., IEEE Electr. Dev. Lett., 12, 471 (1991).Google Scholar
5. Hafizi, M., Jensen, J. F., Metzger, R. A., Stanchina, W. E., Rensch, D. B., and Allen, Y. K., IEEE Electr. Dev. Lett., 13, 612 (1992).Google Scholar
6. Chin, T. P., Kirchner, P. D., Woodall, J. M., and Tu, C.W., Appl. Phys. Lett., 59, 2865 (1991).Google Scholar
7. Abernathy, C. R., Pearton, S. J., Ren, F., Hobson, W. S., Fullowan, T. R., Katz, A., Jordan, A. S., and Kovalchick, J., J. Cryst. Growth, 105, 375 (1990).Google Scholar
8. Hanson, A. W., Stockman, S. A., and Stillman, G. E., IEEE Electr. Dev. Lett., 13, 504 (1992).Google Scholar
9. Gee, R. C., Chin, T. P., Tu, C. W., Asbeck, P. M., Lin, C., and Woodall, J. M., IEEE Electr. Dev. Lett., 13, 247 (1992).Google Scholar
10. Frei, M. R., Hayes, J. R., Song, J. I., Caneau, C., Bhat, R., and Cox, H., 1992 Dev. Res. Conf.Google Scholar
11. Mondry, M. J. and Kroemer, H., IEEE Electr. Dev. Lett., 6, 175 (1985).Google Scholar
12. Hanson, A. W., Stockman, S. A., and Stillman, G. E., IEEE Electr. Dev. Lett., 14, 25 (1993).Google Scholar
13. Chen, Y. K., Kapro, R., Tseng, W. T., and Wu, M. C., 1992 Dev. Res. Conf. Google Scholar
14. Tokumitsu, E., Deniai, A. G., Joyner, C. H., Chandrasekhar, S., and Wu, M. C., Appl. Phys. Lett., 57, 2841 (1990).Google Scholar
15. Pekarik, J. J., Kroemer, H. and English, J., 1992 Dev. Res. Conf. Google Scholar