Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T18:12:13.589Z Has data issue: false hasContentIssue false

Materials analysis by aberration-corrected STEM

Published online by Cambridge University Press:  01 February 2011

Ondrej L. Krivanek
Affiliation:
Nion Co., 1102 8th St, Kirkland, WA 98033, USA
Neil J. Bacon
Affiliation:
Nion Co., 1102 8th St, Kirkland, WA 98033, USA
George C. Corbin
Affiliation:
Nion Co., 1102 8th St, Kirkland, WA 98033, USA
Niklas Dellby
Affiliation:
Nion Co., 1102 8th St, Kirkland, WA 98033, USA
Andrew McManama-Smith
Affiliation:
Nion Co., 1102 8th St, Kirkland, WA 98033, USA
Matthew F. Murfitt
Affiliation:
Nion Co., 1102 8th St, Kirkland, WA 98033, USA
Peter D. Nellist
Affiliation:
Dept. of Physics, Trinity College Dublin, Dublin, Ireland
Zoltan S. Szilagyi
Affiliation:
Nion Co., 1102 8th St, Kirkland, WA 98033, USA
Get access

Abstract

Electron-optical aberration correction has recently progressed from a promising concept to a powerful research tool. 100–120 kV scanning transmission electron microscopes (STEMs) equipped with spherical aberration (Cs) correctors now achieve sub-Å resolution in high-angle annular dark field (HAADF) imaging, and a 300 kV Cs-corrected STEM has reached 0.6 Å HAADF resolution. Moreover, the current available in an atom-sized probe has grown by about 10x, allowing electron energy loss spectroscopy (EELS) to detect single atoms. We summarize the factors that have made this possible, and outline likely future progress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E. and Lupini, A.R., J. Electron Microscopy 50, 177 (2001).Google Scholar
2. Nellist, P.D. et al., Science 305, 1741 (2004).Google Scholar
3. Sohlberg, K. et al., ChemPhysChem, in press.Google Scholar
4. Abe, E., Yan, Y. and Pennycook, S.J., Nature Materials 3, 759 (2004).Google Scholar
5. Shibata, N., et al., Nature 428, 730 (2004).Google Scholar
6. Chisholm, M. F. et al., to be published.Google Scholar
7. Batson, P.E., Dellby, N. and Krivanek, O.L., Nature 418, 617 (2002).Google Scholar
8. Varela, M., et al., Phys Rev Let. 92, 095502 (2004).Google Scholar
9. Falke, U., Bleloch, A.L., Falke, M., Teichert, S., Phys Rev. Lett. 92, 116103 (2004).Google Scholar
10. Yu, B.D. et al., J. Vac. Sci. Technol. B 19, 1180 (2001).Google Scholar
11. Tung, R.T., Gibson, J.M. and Poate, J.M., Phys Rev. Lett. 50, 429 (1983).Google Scholar
12. Bleloch, A.L., private communication (2003).Google Scholar
13. Krivanek, O.L., Nellist, P.D. and Dellby, N., US patent #6, 770, 887.Google Scholar
14. Krivanek, O.L. et al., Ultramicrosscopy 96, 229 (2003).Google Scholar
15. Scherzer, O., Optik 2, 114 (1947).Google Scholar