Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-18T03:37:56.327Z Has data issue: false hasContentIssue false

Material Related Prerequisites for Chalcopyrite Based Thin Film Solar Cells

Published online by Cambridge University Press:  01 February 2011

Hans-Werner Schock*
Affiliation:
University of Stuttgart, Institute of Physical Electronics, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

This contribution reviews the present state of understanding of material properties of chalcopyrite based thin films in respect of application in solar cells. Specific properties of the surface and grain boundaries as well as the back contact have direct consequences for device operation. Surface reconstruction results in Cu depletion of the surface and provokes formation of an intrinsically graded structure. New information about the depth of Cu depleted surface layer is derived from grazing incidence x-ray diffraction. The origin of the charge necessary for an inversion of the surface is still open. In this context, we summarize and evaluate controversial discussions about extrinsic doping by diffusion of donors from partial electrolytes or from the buffer layer. Further open questions are the origin for low recombination velocity at grain boundaries and favorable properties of the back contact and its relation to the interface with back contact materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Guillemoles, J.-F., Kronik, L., Cahen, D., Rau, U., Jasenek, A., and Schock, H. W., J. Phys. Chem. B 104, 48494862 (2000).Google Scholar
2. Guillemoles, J.-F., Rau, U., Kronik, L., Schock, H. W., and Cahen, D., Adv. Mat. 11, 957 (1999).Google Scholar
3.Cu(In, Ga)Se2 solar cells, Rau, U. and Schock, H. W.: in Clean Electricity from Photovoltaics, edited by Archer, M. D., Hill, R. (Imperial College Press, London, U. K., 2001) p. 277.Google Scholar
4. Rau, U. and Schock, H. W., Appl. Phys. A. 69, 131 (1999).Google Scholar
5. Schock, H.W., Noufi, R., Prog. Photovolt. Res. Appl. 8, 151160 (2000).Google Scholar
6. Jasenek, A., Schock, H. W., Werner, J. H., and Rau, U., Appl. Phys. Lett. 79, 29222924 (2001).Google Scholar
7. Yan, Y., Jones, K. M., Abushama, J., Young, M., Asher, S., Al-Jassim, M. M., and Noufi, R., Appl. Phys. Lett. 65, 1008 (2002).Google Scholar
8. Romero, M.J., Al-Jassim, M.M., Dhere, R.G., Hasoon, F. S., Contreras, M. A., Gessert, T. A. and Moutinho, H. R., Prog. Photovolt: Res. Appl. 10, 445455, (2002).Google Scholar
9. Schock, H. W. and Rau, U., Physica B, 308-310, 1081 (2002).Google Scholar
10. Hanna, G., Mattheis, J., Yamamoto, Y., Rau, U., Schock, H.W., Proc. EMRS 2002, Thin Solid Films, in press.Google Scholar
11. Hedström, J., Ohlsen, H., Bodegard, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M. and Schock, H.-W. (1993), Conf. Record 23rd. IEEE Photovoltaic Specialists Conf., Louisville, IEEE Press, Piscataway, p. 371.Google Scholar
12. Braunger, D., Hariskos, D., Bilger, G., Rau, U., and Schock, H. W., Thin Solid Films 361-362, 161 (2000).Google Scholar
13. Schroeder, D. J. and Rockett, A. A.. J. Appl. Phys. 82, 59825985 (1997).Google Scholar
14. Tiwari, A., presented at MRS spring meeting, 2003.Google Scholar
15. Herberholz, R., Rau, U., Schock, H. W., Haalboom, T., Gödecke, T., Ernst, F., Beilharz, C., Benz, K. W., and Cahen, D., Euro. Phys. J. AP 6, 131 (1999).Google Scholar
16. Tokita, Y., Chaisitsak, S., Miyazaki, H., Mikami, R., Yamada, A., and Konagai, M., Jpn. J. Appl. Phys. 41, 74077412 (2002).Google Scholar
17. Dullweber, T., Hanna, G., Rau, U., and Schock, H. W., Solar Energy Materials and Solar Cells 67, 145150 (2001)Google Scholar
18. Schmid, D., Ruckh, M., Grunwald, F., and Schock, H. W., J. Appl. Phys. 73, 29022909 (1993)Google Scholar
19. Koetschau, I., PhD Thesis, Stuttgart, 2003.Google Scholar
20. Koetschau, I., Schock, H.W., presented at MRS spring meeting, 2003.Google Scholar
21. Zhang, S. B., Wei, S.H., Zunger, A., and Katayama-Yoshida, H., Phys. Rev. B. 57, 9642 (1998)Google Scholar
22. Nguyen, Q., Orgassa, K., Koetschau, I., Rau, U., Schock, H.W., Proc.EMRS2002, Thin Solid Films in press.Google Scholar
23. Nguyen, Q., Bilger, G., Rau, U., Schock, H.W., presented at MRS spring meeting, 2003.Google Scholar
24. Rau, U., Turcu, M., presented at MRS spring meeting, 2003.Google Scholar
25. Niemegeers, A. and Burgelman, M., Proc. of the 25th IEEE Photov. Spec. Conf. (IEEE New York, 1996) p. 901.Google Scholar
26. Wada, T., Solar Energy Materials and Solar Cells 49, 249 (1997).Google Scholar
27. Dullweber, T., Lundberg, O., Malmström, J., Bodegard, M., Stolt, L., Rau, U., Schock, H. W., and Werner, J. H., Thin Solid Films 387, 1113 (2001).Google Scholar
28. Lundberg, O., Bodegard, M., Malmström, J., Stolt, L., Prog. Photovolt: Res. Appl. 11, 7788 (2003).Google Scholar
29. Orgassa, K., Schock, H.W., Werner, J. H., Proc. EMRS 2002, Thin Solid Films, in press.Google Scholar
30. Vögt, M., Lux-Steiner, M. Ch., Schweikardt, H.-P., Dolatzoglou, P., Keil, M., Reetz, W. and Bucher, E., Proc. 4th Int. PVSEC Conf., Sydney, Australia (1989), p. 493.Google Scholar
31. Nakada, T., Hirabayashi, Y. and Tokado, T., Jpn. J. Appl. Phys. 41, L1209–L1211 (2002).Google Scholar