Skip to main content Accessibility help
×
Home

Mass Transfer in a Geologic Environment

  • S. J. Zavoshy (a1), P. L. Chambre' (a1) and T. H. Pigford (a1)

Abstract

A new analytical solution is presented that predicts the rate of dissolution of species from a waste package surrounded by a wet porous medium. By equating the rate of diffusive mass transfer into the porous rock to the rate of liquid-surface chemical reaction, an analytical solution for the timedependent dissolution rate and the time-dependent concentration of dissolved species at the waste surface is obtained. From these results it is shown that for most of the important species in a package of radioactive waste the surface liquid quickly reaches near-saturation concentrations and the dissolution rate can be predicted by the simpler theory that assumes saturation concentrations in the surface liquid.

Copyright

References

Hide All
1. Chambre', P. L., Pigford, T.H., Zavoshy, S.J., “Solubility-Limited Dissolution Rate in Groundwater”, Trans. Amer. Nucl. Soc., 40, 153 (1982)
2. Chambre', P. L., Zavoshy, S.J., Pigford, T. H., “Solubility-Limited Fractional Dissolution Rate of Vitrified Waste in Groundwater”, Trans. Amer. Nucl. Soc., 43, 111, (1982)
3. Chamnre', P. L., Pigford, T.H., Sato, Y., Fujita, A., Lung, H., Zavoshy, S.J., Kobayashi, R., “Analytical Performance Models”, LBL-14842 (1982)
4. Chambre', P. L., Pigford, T.H., “Prediction of Waste Performance in a Geologic Repository”, Proceedings of Materials Research Society, The Scientific Basis for Nuclear Waste Management, Boston (1983)
5. Wicks, G.G., and Wallace, R.M., “Leachability of Waste Glass Systems– Physical and Mathematical Models”, DP-MS-82−18.E. I.du Pont de Nemours and Co., Savannah River Plant, Aiken, S.C.(1982).
6. Plodinec, M.J., Wicks, G.G., and Bibler, N.E., “An Assessment of Savannah River Borosilicate Glass in the Repository Environment”, DP-1629. E. I.du Pont de Nemours and Co., Savannah River Plant, Aiken, S.C. (1982).
7. Macedo, P.B., Barkatt, A., Montrose, C.J., “Phenomenological Models of Nuclear Waste Glass Leaching”, Chapter 6 in “Final Report of the Defense High-Level Waste Leaching Mechanisms Program”, J. E. Mendel (Compiler), PNL-5157 (August 1984).
8. O'Connor, T.L., Greenberg, S.A., “The Kinetics for the Solution of Silica in Aqueous Solutions”, J. Phys. Chem., 62, 11951198 (1958)
9. van Lier, J.A., Bruyn, P. L.De, Overbeek, J. Th.G., “The Solubility of Quartz”, J. Phys. Chem., 64, 16751682 (1960)
10. Wirth, G.S., Gieskes, J.M., “The Initial Kinetics of Dissolution of Vitreous Silica in Aqueous Media”, J. of Colloid and Interface Science, 68, 492500 (1979).
11. Angard, P., Helgeson, H.C., “Thermodynamic and Kinetic Constraints on Reaction Rates Among Minerals and Aqueous Solutions I. Theoretical Considerations”, Amer. J.of Science, 282, 237285 (1982).
12. Pederson, L.R., Buckwalter, C.Q., McVay, G.L., “The Effects of Surface Area to Solution Volume on Waste Glass Leaching”, Nucl. Tech., 62, 151 (August 1983).
13. Strachan, D. M., “Results From Long-Term use of MCC-1 Static Leach Test”, Nuclear and Chemical Waste Management, 4, 177188 (1983).
14. Chick, L.A., Turcotte, R. P., “Glass Leaching Performance”, PNL 4576. Pacific Northwest Laboratory, Richland, Washington (December 1982).
15. Chambre', P.L. to be published
16. Jander, G., Jahr, K. F., Kolloid-Beihefte, 41, 48 (1934).
17. H., Pigford, T., Chambre', P. L., Zavoshy, S. J., “Effect of Repository Heating on Dissolution of Glass Waste”, Trans. Amer. Nucl. Soc., 44, 115 (1983).
18. Battelle Pacific Northwest Laboratory, “Data Submitted for Nuclear Waste Materials Handbook”, PNL-3990, Richland, Washington (1984).
19. Pigford, T.H., Blomeke, J. O., Brekke, T. L., Cowan, G. A., Falconer, W. E., Grant, N. J., Johnson, J. R., Matusek, J. M., Parizek, R. P., Pigford, R. L., White, D. E., “A Study of the Isolation System for Geologic Disposal of Radioactive Wastes”, National Academy Press, Washington, D. C. (April 1983).
20. Bradley, D.J., Harvey, C. O., Turcotte, R. P., “Leaching of Actinides and Technetium from Simulated High-Level Waste Glass”, PNL-3152, Pacific Northwest Laboratory, Richland, Washington (August 1979).
21. Peters, R.D., Diamond, H., “Actinide Leaching from Waste Glass: Air-Equilibrated Versus Deaerated Conditions”, PNL-3971, Pacific Northwest Laboratory, Richland, Washington (October 1981).
22. Seidell, A., “Solubilities of Inorganic and Metal-Organic Compounds”, 4th ed., Vol.2. American Chemical Society, Washington, D.C. (1965).
23. Wood, B.J., Walther, J. W., “Rates of Hydrothermal Reactions”, Science, 222, 413, 28 October 1982).
24. Berner, R.A., “Rate Control of Mineral Dissolution Under Earth Surface Conditions”, Am. J. Sci. 278:12351252 (1978).
25. Skagius, K., and Neretnieks, I., “Diffusion in Crystalline Rocks”, pp. 181182 in Scientific Basis for Nuclear Waste Management, Lutze, V. W., ed. Proceedings of the Materials Research Society Fifth International Symposium. New York: Elsevier Science (1982).
26. Bradbury, M.H., Lever, D., and Kinsey, D., “Aqueous Phase Diffusion in Crystalline Rock”, pp. 569578 in Scientific Basis for Nuclear Waste Management, Lutze, V. W., ed. Proceedings of the Materials Research Society Fifth International Symposium. New York: Elsevier Science (1982).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed