Skip to main content Accessibility help

Martensitic Transformation in Submicron Cu-Al-Ni Pillar

  • Lifeng Liu (a1) (a2), Yumei Zhou (a1) and Lan Lv (a1) (a2)


The transformation plateau on the strain-stress curve is the characteristic of superelasticity of bulk shape memory alloys upon tension/compression loading. However, recent studies show that such transformation plateau is hard to see when the sample size of shape memory alloys decreases to submicrons. In order to see what happened in such small scale samples during loading, in-situ compression test has been done with single crystal Cu-14.2Al-4.0Ni (wt %) submicron pillars. Our in-situ observation during compression demonstrates that the stress-induced martensitic transformation indeed occurs in submicron pillars, but is not suppressed. Furthermore, the transformation proceeds in a sequential nucleation-growth-nucleation dominated mode, but not the transient way like that in bulk materials. As a result, the stress keeps increasing throughout the transformation and no obvious transformation plateau can be detected. However, the underlying reason for such contrast transformation behaviors between our submicron pillars and bulk materials still needs further investigation.



Hide All
1. Bhattacharya, K., Conti, S., Zanzotto, G., and Zimmer, J., Nature 428, 55 (2004).
2. Otsuka, K. and Wayman, C. M., shape memory materials (Cambridge University, Cambrige, UK, 1998) pp. 3032.
3. Huang, W. M., Ding, Z., Wang, C. C., Wei, J., Zhao, Y., and Purnawali, H., Mater. Today 13, 54 (2010).
4. Ibarra, A., Caillard, D., San Juan, J., and No, M. L., Appl. Phys. Lett. 90, 3 (2007).
5. Patoor, E., Lagoudas, D. C., Entchev, P. B., Brinson, L. C., and Gao, X. J., Mech. Mater. 38, 391 (2006).
6. Lagoudas, D. C., Entchev, P. B., Popov, P., Patoor, E., Brinson, L. C., and Gao, X. J., Mech. Mater. 38, 430 (2006).
7. Waitz, T., Tsuchiya, K., Antretter, T., and Fischer, F. D., MRS Bull. 34, 814 (2009).
8. Ibarra, A., San Juan, J., Bocanegra, E. H., and M. L. N, Acta Mater. 55, 4789 (2007).
9. Fu, Y. Q., Luo, J. K., Flewitt, A. J., Huang, W. M., Zhang, S., Du, H. J., and Milne, W. I., Int. J. Comput. Mater. Sci. Surf. Eng. 2, 208 (2009).
10. Frick, C. P., Orso, S., and Arzt, E., Acta Mater. 55, 3845 (2007).
11. Clark, B. G., Gianola, D. S., Kraft, O., and Frick, C. P., Adv. Eng. Mater. 12, 808 (2010).
12. Juan, J. S., No, M. L., and Schuh, C. A., Nat. Nanotechnol. 4, 415 (2009).
13. Waitz, T., Antretter, T., Fischer, F. D., and Karnthaler, H. P., Mater. Sci. Technol. 24, 934 (2008).
14. Ye, J., Mishra, R. K., Pelton, A. R., and Minor, A. M., Acta Mater. 58, 490 (2010).
15. Chen, Y. and Schuh, C. A., Acta Mater. 59, 537 (2011).
16. Ueland, S. M. and Schuh, C. A., Acta Mater. 60, 282 (2012).
17. Vishnu, K. G. and Strachan, A., Phys. Rev. B 85, 014114–1 (2012).


Martensitic Transformation in Submicron Cu-Al-Ni Pillar

  • Lifeng Liu (a1) (a2), Yumei Zhou (a1) and Lan Lv (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed