Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-20T06:09:43.826Z Has data issue: false hasContentIssue false

Manufacturing of Covalent Ceramics by Exothermic Reactions

Published online by Cambridge University Press:  22 February 2011

Seetharama C. Deevi*
Affiliation:
Research and Development Center, Philip Morris, USA, Richmond, VA 23234
Get access

Abstract

Manufacturing of high temperature materials is an energy expensive process, and conventional techniques require long periods of homogenization to ensure uniform chemical composition in large batches of material. Several covalent ceramics, and high temperature materials can be manufactured by utilizing the exothermicity of the reactants. Some of the salient features of combustion synthesis, approaches to densify the combustion synthesized product, and other processes that utilize exothermic reactions for the synthesis of materials have been discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Subrahmanyam, J. and Vijayakumar, M., J. Mater. Sci., 27, 6249 (1992).Google Scholar
2. Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989)Google Scholar
3. Deevi, S.C., J. Mat. Sci, 26, 2662 (1991).Google Scholar
4. Naiborodenko, Y.S., Itin, V.I., Merzhanov, A.G., Borovinskaya, I.P., Ushakov, V.P., and Maslow, V.P., Sov. Phys. J. (Engl. Transl.), 16, 872 (1973).Google Scholar
5. Naiborodenko, Y.S., Itin, V.I., Belozerov, B.P., and Ushakov, V.P., and Savitskii, K.V., Sov. Phys. J. (Engl. Transl.), 16, 1507 (1973).Google Scholar
6. Philpot, K.A., Munir, Z.A., and Holt, J.B., J. Mater. Sci., 22, 159,1987.Google Scholar
7. Frankhouser, W.L., Brendley, K.W., Kieszek, M.C., and Sullivan, S.T., “Gasless Combustion Synthesis of Refractory Compounds”, Noyes Publications, (1985)Google Scholar
8. Frankhouser, W.L., “Advanced Processing of Ceramic Compounds”, Noyes Publications, (1987).Google Scholar
9. Holt, J. B., Lawrence Livermore National Laboratories, LLL-TB-84, May, 1986.Google Scholar
10. Holt, J. B., Mater. Bull. pp60, Oct-Nov. 1988.Google Scholar
11. Niller, A., Moss, G., R., , “Fabrication of Ceramics by Shock Compaction of Materials Prepared by Combustion Synthesis”, U.S. Patent No. 5,114,645 (1992).Google Scholar
12. Halverson, D., Lum, B., Munir, Z., “Combustion Synthesis of Low Exothermic Component Rich Composites”, U.S. Patent No. 4,990,180 (1991).Google Scholar
13. Dunmead, S., Holt, J.B., Kingman, D., Munir, Z., “Grained Composite Materials Prepared by Combustion Synthesis Under Mechanical Pressure”, U.S. Patent 4,909,842 (1990).Google Scholar
14. Holt, J.B., Dunmead, S., Halverson, D., Landingham, R., “Cermet Materials Prepared by Combustion Synthesis and Metal Infiltration”, U.S. Patent 4,988,645 (1991)Google Scholar
15. Yamada, O., Miyamoto, Y., and Koizumi, M., Bull. Am. Ceram. Soc. 64, 319 (1985).Google Scholar
16. Zeng, J., Miyamoto, Y., and Yamada, O., J. Am. Ceram. Soc., 74, 2197 (1991).Google Scholar
17. Nino, M., Yatsuyanagi, N., Ikeuchi, J., Sata, N., Hirano, T., and Sumiyoshi, K., U. S. Patent No. 4,778,649 (1988).Google Scholar
18. Sata, N., Sanada, N., Hirano, T., and Niino, M., in Proceedings of the First Int. Symp. on Combustion and Plasma Synthesis of High Temperature Materials, VCH Publishers, Inc., pp195203, 1990.Google Scholar
19. Miyamoto, Y., Nakanishi, H., Tanaka, I., Okamoto, T., and Yamada, O., in Proc. of the First Int. Symp. FGM, Sendai, 257, 1990.Google Scholar
20. Govindarajan, S., Monroe, K., Moore, J.J., Mishra, B., Olson, D. L., and Disam, J., Presented at TMS-ASM Joint Meeting, Pittsburgh, Oct. 1993.Google Scholar
21. “Machining of Advanced Materials”, Proceedings of the International Conference on Machining of Advanced Materials, July 20-22, 1993, NIST Special Publication 847, National Institute of Standards and Technology, Gaithersburg, MD.Google Scholar
22. Borisov, Y. and Borisov, A., Proceedings of 1993 National Thermal Spray Conference, Anaheim, CA, June 1993.Google Scholar
23. Bonneau, P.R., Jarvis, R.F. Jr., and Kaner, R.B., Nature, 349, 510 (1991).Google Scholar
24. Merzhanov, A. G., I. Borovinskaya, P., Ratnikov, V. I., Prokudina, V. K., Memelov, V. L., and Gluskin, Ya. A., Translated from Izvvestiya Akademii Nauk SSSR, 13, 811 (1977).Google Scholar
25. Prokudina, V. K., Kalikhman, V. L., Golubnichaya, A. A., Borovinskaya, I. P., and Merzhanov, A. G., Translated from Poroshkovaya Metallurgiya, 6, 48 (1978).Google Scholar
26. Chakurov, Chr., Rusanov, V., and Koichiev, I., J. Solid State Chem., 71, 522, (1987).Google Scholar
27. Glassman, I., Davis, K. A. and Brezinsky, K., Twenty-Fourth Symposium (International) on Combustion, (The Combustion Institute, 1992), pp 1877.Google Scholar
28. Calcote, H. F., Felder, W., Keil, D. G., and Olson, D. B., Twenty-Third Symposium (International) on Combustion, (The Combustion Institute, 1990) pp 1739.Google Scholar
29. Calcote, H. F., Felder, W., Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, 1992), pp 1869.Google Scholar