Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T02:36:59.585Z Has data issue: false hasContentIssue false

Making, Breaking and Sliding of Nanometer-Scale Contacts

Published online by Cambridge University Press:  15 February 2011

R.W. Carpick
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
M. Enachescu
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
D.F. Ogletree
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
M. Salmeron
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

The contact between an atomic force microscope tip and a sample surface can form an ideal single asperity of nanometer dimensions, where the interaction forces can be measured with sub- nanoNewton force resolution. Studies of contact, adhesion and friction for these nano-asperities have been carried out for a variety of tips and single crystal sample surfaces. The major result is the observation of proportionality between friction and true contact area for a variety of systems, and an impressive agreement with continuum mechanics models for contact area even at the nanometer scale. The relevant continuum models can in fact be understood in the framework of fracture mechanics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carpick, R.W. and Salmeron, M., Chem. Rev. 97, 1163 (1997).Google Scholar
2. Ogletree, D.F., Carpick, R.W., and Salmeron, M., Rev. Sci. Instrum. 67, 3298 (1996).Google Scholar
3. Dai, Q., Völlmer, R., Carpick, R.W., Ogletree, D.F., and Salmeron, M., Rev. Sci. Instrum. 66, 5266 (1995).Google Scholar
4. Carpick, R.W., Agrait, N., Ogletree, D.F., and Salmeron, M., J. Vac. Sci. Technol. B 14, 1289 (1996).Google Scholar
5. Sheiko, S.S., Möller, M., Reuvekamp, E.M.C.M., and Zandbergen, H.W., Phys. Rev. B 48, 5675 (1993).Google Scholar
6. Carpick, R.W., Agraft, N., Ogletree, D.F., and Salmeron, M., Langmuir 12, 3334 (1996).Google Scholar
7. Enachescu, M., van den Oetelaar, R.J.A., Carpick, R.W., Ogletree, D.F., Flipse, C.F.J., and Salmeron, M., Phys. Rev. Lett. 81, 1877 (1998).Google Scholar
8. van den Oetelaar, R. and Flipse, C., Surf. Sci. 384, L828 (1997).Google Scholar
9. Morita, S., Fujisawa, S., and Sugawara, Y., Surf. Sci. Rep. 23, 3 (1996).Google Scholar
10. Johnson, K.L., Kendall, K., and Roberts, A.D., Proc. Roy. Soc. London A 324, 301 (1971).Google Scholar
11. Johnson, K.L., Proc. Roy. Soc. London A 453, 163 (1997).Google Scholar
12. Maugis, D. and Barquins, M., J. Phys. D. (Appl. Phys.) 11, 1989 (1978).Google Scholar
13. McNeil, L.E. and Grimsditch, M., J. Phys: Condens. Matter 5, 1681 (1992).Google Scholar
14. Metals Handbook, 10th ed. American Society for Metals, Metals Park, Ohio, 1990.Google Scholar
15. Cottrell, A.H., Introduction to the Modern Theory of Metals, Institute of Metals, London Brookfield, VT, USA, 1988.Google Scholar
16. Hurtado, J. and Kim, K.-S., Proc. Roy. Soc. A under review (1999).Google Scholar
17. Hurtado, J. and Kim, K.-S., Fracture and Ductile vs. Brittle Behavior – Theory, Modeling and Experiment; Proceedings of MRS Fall Meeting Symposium M, December 1998, Boston, MA. this volume (1999).Google Scholar
18. Briscoe, B.J. and Evans, D.C.B., Proc. Roy. Soc. London A 380, 389 (1982).Google Scholar
19. Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., and Stupp, B.C., Appl. Phys. Lett. 57, 995 (1990).Google Scholar
20. Johnson, K.L., Langmuir 12, 4510 (1996).Google Scholar
21. Greenwood, J.A., Proc. Roy. Soc. London A 453, 1277 (1997).Google Scholar
22. Maugis, D., J. Colloid Interface Sci. 150, 243 (1992).Google Scholar
23. Derjaguin, B.V., Muller, V.M., and Toporov, Y.P., J. Colloid Interface Sci. 53, 314 (1975).Google Scholar
24. Carpick, R.W., Ogletree, D.F., and Salmeron, M., J. Colloid Interface Sci. under review (1998).Google Scholar
25. Johnson, K.L., Contact Mechanics, University Press, Cambridge, 1987.Google Scholar
26. Tortonese, Dr. M., Park Scientific Instruments Inc., Sunnyvale, CA (personal communication).Google Scholar
27. Sze, S.M., Physics of Semiconductor Devices, 2nd ed. Wiley, New York, 1981.Google Scholar
28. Klein, C.A., Materials Research Bulletin 27, 1407 (1992).Google Scholar
29. Shackelford, J.F., Alexander, W., and Park, J.S., CRC Materials Science and Engineering Handbook, 2nd ed. CRC Press, Boca Raton, 1994.Google Scholar
30. van den Oetelaar, R.J.A., Ph.D. Thesis, Eindhoven University of Technology, 1998.Google Scholar
31. Carpick, R.W., Dai, Q., Ogletree, D.F., and Salmeron, M., Trib. Lett. 5, 91 (1998).Google Scholar
32. Barrena-Villas, E., Kopta, S., Ogletree, D.F., Charych, D.H., and Salmeron, M., Phys. Rev. Lett. under review (1998).Google Scholar