Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T10:16:57.668Z Has data issue: false hasContentIssue false

Magnetron Dry Etching for Photonic Device Fabrication

Published online by Cambridge University Press:  22 February 2011

H. E. G. Arnot
Affiliation:
Paul Scherrer Institute Zürich, Badenerstrasse 569, CH-8048 Zürich, Switzerland
H. P. Zappe
Affiliation:
Paul Scherrer Institute Zürich, Badenerstrasse 569, CH-8048 Zürich, Switzerland
J. E. Epler
Affiliation:
Paul Scherrer Institute Zürich, Badenerstrasse 569, CH-8048 Zürich, Switzerland
B. Graf
Affiliation:
Paul Scherrer Institute Zürich, Badenerstrasse 569, CH-8048 Zürich, Switzerland
R. Widmer
Affiliation:
Paul Scherrer Institute Zürich, Badenerstrasse 569, CH-8048 Zürich, Switzerland
H. W. Lehmann
Affiliation:
Paul Scherrer Institute Zürich, Badenerstrasse 569, CH-8048 Zürich, Switzerland
Get access

Abstract

Magnetron dry etching using SiCl4, combined with a smooth reflowed photoresist masking technique has been used to fabricate GaAs/AlGaAs ridge waveguides. The effect of pressure, flowrate and power on etch rate and sidewall smoothness has been studied. Waveguides fabricated using optimum parameters exhibited optical losses lower than those achievable using wet etching. This process was further used in the fabrication of Fabry Perot ridge lasers, detectors and phase modulators.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sonek, G J, Zhong, L J, Wolf, E D, Ballantyne, J M, J. Lightwave Technol. 3 (15), 1147 (1985).Google Scholar
2 Matsui, T, Sugimoto, H, Ohtsuka, K, Abe, Y, Ogata, H, Elect. Lett. 25, 954 (1989).Google Scholar
3 see for example Cheung, R, Thoms, S, Watt, M, Foad, M A, sotomayor-Torres, C M, Wilkinson, C D, Cox, U J, Cowley, R A, Dunscombe, C, Williams, R H, Semicond. Sci. Technol. 7, 1189 (1992); T Hara, H Suzuki, A Suga, T Terada, N Toyoda, J. Appl. Phys. 62 (10), 4109 (1987).Google Scholar
4 see for example Tong, M, balleger, D G, Ketterson, A, Roan, E J, Cheng, K Y, and Adesida, I, J. Elect. Mat. 21 (1), 9 (1992); R F Cheung, Y H Lee, C M Knoedler, K Y Lee, T P Smith III, D P Kern, Appl. Phys. Lett. 54 (2), 2140, (1989).Google Scholar
5 Seaward, K L, Moll, N J, J. Vac. Sci. Technol. B 10 (1), 46 (1992).Google Scholar
6 Rossnagel, S M in Thin Film Processes II edited by Vossen, J L and Kern, W (Academic Press Limited 1991) Chap. 2 p.4358.Google Scholar
7 Ono, K, Ooman, T, Tuda, M, Namba, K, J. Vac. Sci. Technol. A 10 (4), 1071 (1992).Google Scholar
8 Singh, J, J. Vac. Sci. Technol. B 9 (4), 1911, 1991.Google Scholar
9 Meyyappan, M, McLane, G F, Cole, M W, Laraeu, R, Namaroff, M, Sasserath, J, and Sundararamamn, C S, J. Vac. Sci. Technol. A 10 (4), 1147, 1992; M Meyyappan, G F McLane, H S Lee, D Eckart, M Namaroff, J Sasserath, J. Vac. Sci. Technol. B 10 (3), 1215, 1992.Google Scholar
10 see for example Lin, I, J. Appl. Phys. 58 (8),2981 (1985); M Kimizuka, Y Watanabe and Y Ozaki, J. Vac. Sci. Technol. B10 (5), 2192 (1992); G Y Yoem and M J Kushner, J. Vac. Sci. Technol. A 10 (4), 1071 (1992).Google Scholar
11 Contolini, R J and D'Asaro, L A, J. Vac. Sci. Technol. B 4 (3), 706, 1986.Google Scholar
12 McLane, G F, Meyyappan, M, Lee, H S, Buckawald, W, J. Vac. Sci. Technol. A 9 (3), 935, 1991;G F McLane, M Meyyappan, M W Cole, C Wrenn, J. Appl. Phys. 69 (2) 695 1991.Google Scholar