Skip to main content Accessibility help
×
Home

Magnetoreflection in Ion-Implanted Graphite*

  • L.E Mcneil (a1), B.S. Elman (a1), M.S Dresselhaus (a1) (a2), G. Dresselhaus (a3) and T. Venkatesan (a4)...

Abstract

The use of a hot stage (T ∼ 600°C) for ion implantation into graphite permits the introduction of foreign species into the host material while eliminating most of the lattice damage associated with ion implantation at room temperature. This permits the use of the magnetoreflection technique for examination of changes in the electronic band structure induced by implantation Samples of graphite implanted with 31P and 11B at various energies and fluences are examined, and the in-plane and c-axis disorder are characterized using Raman spectroscopy and Rutherford Backscattering Spectrometer (RBS) techniques. Implantation-induced changes in the electronic band structure are interpreted in terms of the Slonczewski-Weiss- McClure band model. Small changes are found relative to the band parameters that describe pristine graphite.

Copyright

Footnotes

Hide All
*

The work at MIT was supported by ONR Grant #N00014–;77-C-0053

Footnotes

References

Hide All
1. Mayer, J.W., Eriksson, L., and Davis, J.A., Ion Implantation in Semiconductors, (Academic Press, New York, 1970).
2. Slonczewski, J.C. and Weiss, P.R., Phys. Rev. 109, 272 (1958).
3. McClure, J.W., Phys. Rev. 108, 612 (1957);
2a. Phys. Rev. 119, 606 (1960).
4. Moore, A.W., Chemistry and Physics of Carbon, edited by Walker, P.L. and Thrower, P.A., (Dekker, New York, 1973), vol. 11, p. 69.
5. Calculated from the LSS theory [Lindhard, J., Scharff, M., and Schiott, H.E., Dan. Vidensk. Selsk., Mat. Fys. Medd. 33, 14 (1963)]
5a.and electronic stopping-power tables [Northcliffe, L.C. and Schilling, R.F., Nucl. Sect. A 7, 233 (1970)].
6. Tuinstra, F. and Koenig, J.L., J. Chem. Phys. 53, 1126 (1970).
7. Chu, W.-K., Mayer, J.W., and Nicolet, M.-A., Backscattering Spectrometry, (Academic Press, New York, 1978);
7a. Elman, B.S., Braunstein, G., Dresselhaus, M.S., Dresselhaus, G., Venkatesan, T., and Wilkens, B., (to be published).
8. Weiler, M.H., Semiconductors and Semimetals, edited by Willardson, R.K. and Beer, A.C., (Academic Press, New York, 1981);
8a. Weiler, M.H., Ph.D. Thesis, Massachusetts Institute of Technology, 1977 (unpublished).
9. Braunstein, G., Elman, B.S., Dresselhaus, G., and Venkatesan, T., (to be published).
10. Toy, W.W., Dresselhaus, M.S., and Dresselhaus, G., Phys. Rev. B 15, 4077 (1977).
11. Elman, B.S., McNeil, L., Nicolini, C., Chieu, T.C., Dresselhaus, M.S., and Dresselhaus, G., Phys. Rev. B28, (in press).
12. Elman, B.S., Hom, M., Maby, E.W., and Dresselhaus, M.S., Intercalated Graphite, edited by Dresselhaus, M.S., Dresselhaus, G., Fischer, J.E., Moran, M.J., (North-Holland Elsevier, New York, 1983), p. 341.
13. Venkatesan, T., Elman, B.S., Braunstein, G., Dresselhaus, M.S., Dresselhaus, G., (to be published).
14. Turnbull, J.A., Stagg, M.S., and Eeles, W.T., Carbon 3, 387 (1966);
14a. Lowell, C.E., J. Am. Ceram. Soc. 50, 142 (1967).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed