Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T00:27:49.566Z Has data issue: false hasContentIssue false

Magneto-Optical Study of Negative Persistent Photo-Effect in InAs/Alo.5Ga0.5Sb Quantum Wells

Published online by Cambridge University Press:  21 February 2011

J.-P. Cheng
Affiliation:
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Ikai Lo
Affiliation:
WL/MLPO, Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433-6533 Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.
W.C. Mitchel
Affiliation:
WL/MLPO, Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433-6533
Get access

Abstract

Cyclotron resonance (CR) of electrons confined in an InAsZAlo.5Gao.5Sb quantum well has been used to investigate the negative persistent photo-effect (NPP) at low temperatures. After an in situ cross-gap light illumination, the electron density is reduced 28%, and the CR effective mass decreases from (0.0342±0.0002)mo to (0.0322±0.0002)mo. The response time of the NPP build-up transient has been studied via the photon-dose technique, and it is on the order of 10 msec with an illumination power flux of ~ 10mW/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 See, e.g., Munekata, H., Esaki, L., and Chang, L.L., J. Vac. Sci. Technol. B5, 806 (1987).Google Scholar
2 Tuttle, G., Kroemer, H., and English, J.H., J. Appl. Phys. 65, 5239 (1989); P.F. Hopkims, A.J. Rimberg, R.M. Westervelt, G. Tuttle, and H. Kroemer, Appl. Phys. Lett. 1428 (1991).Google Scholar
3 See, e.g., Nelson, R.J., Appl. Phys. Lett. 31, 351 (1977); K. Khachaturyan et al., Phys. Rev. B 40, 6304 (1989); H.X. Jiang and J.Y. Lin, Phys. Rev. Lett. 64, 2547 (1990); A.S. Dissanayake et al., Phys. Rev. B 48, 8145 (1993).Google Scholar
4 Morgan, T.N., Phys. Rev. B 34, 2664 (1986); D.J. Chadi and K.J. Chang, Phys. Rev. Lett. 57, 873 (1988).Google Scholar
5 Lang, D.V. and Logan, R.A., Phys. Rev. Lett. 39, 635 (1977); D.V. Lang, R.A. Logan, and M. Jaros, Phys. Rev. B 19, 1015 (1979).Google Scholar
6 Ikai, Lo, Mitchel, W.C., Manasreh, M.O., Stutz, C.E., and Evans, K.R., Appl. Phys. Lett. 60, 751 (1992); Ikai Lo, W.C. Mitchel, C.E. Stutz, and M.Y. Yen, Proc. of Mat. Res. Soc. 1992 Fall Meeting, Boston.Google Scholar
7 Scriba, J., Seitz, S., Wixforth, A., Kotthaus, J.P., Tuttle, G., English, J.H., and Kroemer, H., Surf. Science 267, 483 (1992).Google Scholar
8 Holmes, S., Cheng, J.-P., McCombe, B.D., and Schaff, W., Phys. Rev. Lett. 69, 2571 (1992).Google Scholar
9 Scriba, J., Wixforth, A., Kotthaus, J.P., Bolognesi, C.R., Nguyen, C., Tuttle, G., English, J.H., and Kroemer, H., Semicond. Sci. Technol. 8, S133 (1993).Google Scholar
10 Yang, M.J., Wagner, R.J., Shanabrook, B.V., Waterman, J.R., and Moore, W.J., Phys. Rev. B 47, 6807 (1993); M.J. Yang, P.J. Lin-Chung, B.V. Shanabrook, J.R. Waterman, R.J. Wagner, and W.J. Moore, 1691 (1993).Google Scholar