Skip to main content Accessibility help

Magnetography: A novel Characterization Tool for Li-Ion-Batteries

  • Timm Bergholz (a1), Theodor Nuñez (a1), Jürgen Wackerl (a1), Carsten Korte (a1) and Detlef Stolten (a1)...


The application of magnetography as a novel method to determine the state of charge (SoC) of commercial Li-ion Batteries is reported. The method is non-invasive and nondestructive and suitable to be applied during normal operation. It is based on spatially resolved measurement of the magnetic field B , induced by the changing current flow during cycling. A standardized measurement setup and procedure for conventional AMR-sensors has been developed, offering high reproducibility (∼0.1%) and the chance to characterize the different spatial components of the magnetic field (B x , B y , B z ). The percentage deviation of the B -distributions for different SoCs for a given current load reveals significant differences. A change of B of up to 20% between SoCs of 90% and 10% is found. The influence of current density at different SoC reveals a constant magnetic susceptibility χ at low SoC and a field dependent χ at high SoC. Both effects are attributed to the change of the magnetic properties upon varying the amount of intercalated lithium in the transition metal (LixNi1/3Co1/3Mn1/3O2) based intercalation cathode. The method can be used to provide an additional parameter for SoCestimation to battery management systems.



Hide All
1. Marom, R.; Amalraj, S. F.; Leifer, N., et al. ., J. Mat. Chem. 2011, 21(27), 99389954.
2. Novak, P., Carb. Electrochem. En. Stor. Conv. Sys., 2010; Vol. 263.
3. Vetter, J.; Novák, P.; Wagner, M. R., et al. ., J. Pow. Sourc. 2005, 147(1-2), 269281.
4. (a) Zhang, J.; Lee, J., J. Pow. Sourc. 2011, 196(15), 60076014; (b) L. Lu; X. Han; J. Li, et al., J. Pow. Sourc. 2013, 226(0), 272–288.
5. Piller, S.; Perrin, M.; Jossen, A., J. Pow. Sourc. 2001, 96(1), 113120.
6. (a) Sasaki, T.; Godbole, V., et al. ., Electr. Mat. 2011; (b) A. Same; V. Battaglia; H.-Y. Tang, et al., J. Appl. Electrochem. 2012, 42(1), 1–9; (d) J. H. Lee; S. Ahn, J. Pow. Sourc. 2003, 119-121, 833–837; (e) U. S. Kim; C. B. Shin; C.-S. Kim, J. Pow. Sourc. 2008, 180(2), 909–916; (f) P. Novák; J. C. Panitz; F. Joho, et al., J. Pow. Sourc. 2000, 90(1), 52–58.
7. Hauer, K.-H.; Potthast, R.; Wüster, T., et al. ., J. Pow. Sourc. 2005, 143(1-2), 6774.
8. Khare, N.; Singh, P.; Vassiliou, J. K., J. Pow. Sourc. 2012, 218(0), 462473.
9. Hill, I. R.; Andrukaitis, E. E., J. Pow. Sourc. 2006, 162(2), 870877.
10. Tinnemeyer, J. A., Proc. Power Sources Conf. 2010, 44th , 508511.
11. Bergholz, T.; Wackerl, J.; Korte, C., et al. ., Patent, August, 2012.
12. Mark W, V., J. Electrostat. 1995, 34(1), 6185.
13. Chernova, N. A.; Nolis, G. M.; Omenya, F. O., et al. ., J. Mat. Chem. 2011, 21(27), 98659875.
14. Hertz, J. T.; Huang, Q.; McQueen, T., et al. ., Prepr. Arch., Condens. Matter 2007.
15. Liu, J.; Kunz, M.; Chen, K., et al. ., J. Phys. Chem. Lett. 2010, 1(14), 21202123
16. Kellerman, D. G.; Karelina, V. V.; Gorshkov, V. S., et al. ., Chem. Sust. Dev. 2002, 10(2), 721726.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed