Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T05:30:02.525Z Has data issue: false hasContentIssue false

Magnetic Heat Capacity of Stage 2 Graphite-Coc12

Published online by Cambridge University Press:  15 February 2011

M. Shayegan
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
L. Salamanca-Riba
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
J. Heremans
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
G. Dresselhaus
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
J-P. Issi
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Get access

Abstract

The heat capacity Cp of graphite-CoC12 (stage 2) is measured at zero and high (up to 14 T) magnetic fields (H applied in-plane). By suppressing the magnetic contribution to Cp at the highest fields, we are able to decompose Cp into its electronic, lattice, and magnetic contributions. The magnetic heat capacity CM is seen to have a broad peak at ⋍ 9.1 K. The shape of this peak is consistent with the reported Monte Carlo calculations of CM based on a twodimensional xy model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zvarykina, A.V., Karimov, Yu. S., Vol'pin, M.E. and Novikov, Y.N., Sov. Phys.-Solid State 13, 21 (1971);Google Scholar
1a Karimov, Yu. S., Zvarykina, A.V. and Novikov, Yu. N.,Sov. Phys.-Solid State 13, 21 (1971)p. 2388;Google Scholar
1b Karimov, Yu. S., Vol'pin, M.E. and Novikov, Yu. N., Sov. Phys.-Solid State 13, 21 (1971)p. 2388;Google Scholar
1c Karimov, yu. S., Vol'pin, M.E. and Noviko, Yu. N., JETP Lett. 14, 142 (1971);Google Scholar
1d Karimov, Yu. S., JETP Lett. 15, 235 (1972);Google Scholar
1e Karimov, Yu. S., Sov. Phys.-JETP 39, 547 (1974);Google Scholar
1f Karimov, Yu. S. and Novikov, Yu. N., JETP Lett. 19, 159 (1974).Google Scholar
2. Karimov, Yu. S., Soy. Phys.-JETP 41, 772 (1976).Google Scholar
3. Suzuki, M. and Ikeda, H., J. Phys. C 14, L923 (1981).Google Scholar
4. Elahy, M., Nicolini, C., Dresselhaus, G. and Zimmerman, G.O., Solid State Commun. 41, 289 (1982).CrossRefGoogle Scholar
5. Onn, D.G., Alexander, M.G., Ritsko, J.J. and Flandrois, S., J. Appl. Phys. 53, 2751 (1982).Google Scholar
6. Elahy, M. and Dresselhaus, G. (proceedings of this symposium).Google Scholar
7. Stout, J.W. and Catalano, E., J. Chem. Phys. 23, 2013 (1955).Google Scholar
8. Chisholm, R.C. and Stout, J.W., J. Chem. Phys. 36, 972 (1962).Google Scholar
9. Kosterlitz, J.M. and Thouless, D.J., J. Phys. C 6, 1181 (1973);Google Scholar
9a Kosterlitz, J.M., J. Phys. C 7, 1046 (1974);Google Scholar
9b Jose, J.V., Kadanoff, L.P., Kirkpatrick, S. and Nelson, D.R., Phys. Rev. B16, 1217 (1977);CrossRefGoogle Scholar
9c also, for a brief introduction to this model, see Ref. 6.Google Scholar
10. Tobochnik, J. and Chester, G.V., Phys. Rev. B20, 3761 (1979).CrossRefGoogle Scholar
11. Stumpp, E., Mat. Sci. Eng. 31, 53 (1977);Google Scholar
11a also see Ref. 6 for details of sample preparation.Google Scholar
12. Fagaly, R.L. and Bohn, R.G., Rev. Sci. Instrum. 48, 1502 (1977).Google Scholar
13. Heremans, J., Shayegan, M., Dresselhaus, M.S. and Issi, J-P., Phys. Rev. B26, 3338 (1982).Google Scholar
14. Shayegan, M., Ph.D. thesis, MIT, (1983), (unpublished).Google Scholar
15. Sample, H., Brandt, B.L. and Rubin, L., Rev. Sci. Instrum. 53, 1129 (1982).Google Scholar
16. Neuringer, L.J. and Shapira, Y., Rev. Sci. Instrum. 40, 1314 (1969).Google Scholar
16a Figure 4 of this Ref. was digitized and used to make the calibration table.Google Scholar
17. Alexander, M.G., Goshorn, D.P. and Onn, D.G., Phys. Rev. B22, 4535 (1980).Google Scholar
18. Dresselhaus, M.S., Dresselhaus, G. and Fischer, J.E., Phys. Rev. B15, 3180 (1977).Google Scholar