Skip to main content Accessibility help

Magnetic Effects at Surfaces and Interfaces (Including Grain Boundaries)

  • A. J. Freeman (a1), Ruqian Wu (a2), Lujun Chen (a2) and Lieping Zhong (a1)


First-principles electronic structure studies based on local spin density functional theory and performed on extremely complex simulations of ever increasingly realistic systems, play a very important role in explaining and predicting surface and interface magnetism. This has led to solving even more challenging problems like the embrittlement of the Fe grain boundary, discussed here. Now, a major issue for first-principles theory is the treatment of the weak spin-orbit coupling (SOC) in magnetic transition metals and their alloys and its subsequent effects: (i) A major breakthrough in eliminating the numerical randomness for the determination of the magneto-crystalline anisotropy was made with the state-tracking and torque approaches. This now enables us to treat magnetostriction and its inverse effect, strain-induced magnetic anisotropy in transition metal bulk, thin films and alloys, (ii) The magneto-optical Kerr effects and x-ray magnetic circular dichroism are now directly calculated and compared with experiment. In all this work, and more recently, on the first-principles calculations of giant magneto-resistance in multilayers, extensive first-principles calculations and model analyses provide simple physical insights and guidelines to search for new magnetic recording and sensor materials.



Hide All
[1] Freeman, A.J. and Wu, R.Q. J. Magn. Magn. Mater. 100, 497 (1991).
[2] Stöhr, J., J. Electron Spectroscopy and Rel. Phenom. 75, 253 (1995).
[3] Carcia, P.A., Meinholdt, A.D. and Suna, A., Appl. Phys. Lett. 47, 178 (1985).
[4] Baibich, M.N., Broto, J.M., Fert, A., Dau, A., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).
[5] Binasch, G., Grunberg, P., Saurenbach, F. and Zinn, W., Phys. Rev. B 39, 4828 (1989).
[6] Parkin, S.S.P., More, N. and Roche, K.P., Phys. Rev. Lett. 64, 2304 (1990).
[7] Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, A.B., Wilhoit, D.R. and Mauri, D., Phys. Rev. B 43, 1279 (1991).
[8] Hurst, J.E. Jr and Kozlovsky, W.J., Jpn. J. Appl. Phys. 32, 5301 (1993).
[9] Daughton, J.M., Thin Solid films, 216, 162 (1992).
[10] Wang, D.S., Wu, R.Q. and Freeman, A.J., Phys. Rev. Lett. 70, 869 (1993).
[11] Wang, X.D., Wu, R.Q., Wang, D.S., and Freeman, A.J., Phys. Rev. B 54, 61 (1996).
[12] Wimmer, E., Krakauer, H., Weinert, M. and Freeman, A. J., Phys. Rev. B 24, 864 (1981);
Weinert, M., Wimmer, E. and Freeman, A. J., Phys. Rev. B 26, 4571 (1982), and references therein.
[13] Roth, C., Kleeman, Th., Hillebrecht, F.U. and Kisker, E., Phys. Rev. B 52, 15691 (1995).
[14] Zhong, L.P., Wu, R.Q., Freeman, A.J. and Olson, G.B., J. Appl. Phys. 81, 4479 (1997).
[15] Olson, G.B., Science 277, 1237 (1997).
[16] Rice, J.R. and Wang, J-S., Mat. Sci. & Eng., A 107, 23 (1989);
Anderson, P.M., Wang, J-S. and Rice, J.R., in Innovations in Ultrahigh-strength Steel Technology, ed. Olson, G.B., Azrin, M. and Wright, E.S., Sagamore Army Materials Research Conference Proceedings: 34th (1990), p. 619.
[17] Briant, C.L. and Messmer, R.P., Phil. Mag. B 42, 569 (1980),
Messmer, R.P. and Briant, C.L., Acta. Metall. 30, 457 (1982).
[18] Eberhart, M.E. and Vvedensky, D.D., Ser. Metall. 22, 183 (1988);
MacLaren, J.M., Crampin, S., Vvedensky, D.D. and Eberhart, M.E., Phys. Rev. Lett. 63 2586 (1989).
[19] Krasko, G.L. and Olson, G.B., Solid State Commun. 76, 247 (1990).
[20] Tang, S., Freeman, A. J. and Olson, G.B., Phys. Rev. B 47, 2441 (1993).
[21] Wu, R., Freeman, A.J. and Olson, G.B., Science 265, 376 (1994); Phys. Rev. B 53, 7504 (1996).
[22] Zhong, L.P., Wu, R.Q., Freeman, A.J. and Olson, G.B., Phys. Rev. B 55, 11133 (1997).
[23] Wang, D.S., Wu, R.Q. and Freeman, A.J., Phys. Rev. B 47, 14932 (1993); Phys. Rev. B 48, 15883 (1993); J. Magn. Magn. Mater. 129, 327 (1994).
[24] Cullen, J. R., Clark, A.E. and Hathaway, K.B., in Materials Science and Technology, Ed. Cahn, R.W., Hasen, P. and Kramer, E.J., Vol. IIIB, 529 (1994).
[25] Perdew, J.P. et al, Phys. Rev. B 33, 8800 (1986); Phys. Rev. B 46, 6671 (1992).
[26] Engel, B.N., England, C.D., Van Leeuwen, R.A., Wiedmann, M.H. and Falco, C.M., Phys. Rev. Lett. 67, 1910 (1991).
[27] Levitin, R.Z. and Markosyan, A.S., J. Magn. Magn. Mater. 84, 287 (1990).
[28] Krinchik, G.S. and Artemev, V.A., Zh. Eksp. Theo Fiz. 53, 1901 (1967) [Sov. Phys. JETP 26, 1080 (1968)].
[29] Schütz, G., Wagner, W., Wilhelm, W., Kienle, P., Zeiler, R. and Materlik, G., Phys. Rev. Lett. 58, 737 (1987);
Stöhr, J., Science 259, 658 (1993).
[30] Thole, B.T., Carra, P., Sette, F. and van der Laan, G., Phys. Rev. Lett. 68 (1992) 1943;
Carra, P., Thole, B.T., Altarelli, M. and Wang, X-D., Phys. Rev. Lett. 70 (1993) 694.

Related content

Powered by UNSILO

Magnetic Effects at Surfaces and Interfaces (Including Grain Boundaries)

  • A. J. Freeman (a1), Ruqian Wu (a2), Lujun Chen (a2) and Lieping Zhong (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.