Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T17:25:33.898Z Has data issue: false hasContentIssue false

Magnetic Anisotropy and Lattice Distortions in The Doped Perovskite Manganites

Published online by Cambridge University Press:  10 February 2011

Y. Suzuki
Affiliation:
Dcpt. Materials Science and Engineering, Cornell University, Ithaca, NY 14853
H. Y. Hwang
Affiliation:
Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974
S-W. Cheong
Affiliation:
Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974
R. B. Van Dover
Affiliation:
Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974
A. Asamitsu
Affiliation:
Joint Research Center for Atom Technology, Tsukuba 305, Japan
Y. Tokura
Affiliation:
Joint Research Center for Atom Technology, Tsukuba 305, Japan Dept. of Applied Physics, University of Tokyo, Tokyo, Japan
Get access

Abstract

We have investigated the magnetic anisotropies of doped manganite materials in epitaxial thin film and single crystal form. Structural characterization, including x-ray diffraction, Rudierford backscattering spectroscopy and atomic force misocroscopy, indicate that our epitaxial films arc single crystalline and have excellent crystallinity. Since lattice distortions greatly affect the magnetic and transport properties of this family of materials, it is not surprising to find the profound effect of strain in films due to the lattice mismatch between the substrate and film. Magnetic anisotropy results of single crystals, subject to no external stress, is compared to those of epitaxial films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Helmolt, R. V., Wecker, J., Holzapfel, B., Schultz, L. and Samwer, K., Phys. Rev. Lett. 71 2331 (1993).Google Scholar
2. Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R. and Chen, L.H. Science 264 413 (1994).Google Scholar
3. Ju, H.L., Kwon, C., Li, Qi, Greene, R.L. and Venkatesan, T., Appl. Phys. Lett. 65 2108 (1994).Google Scholar
4. Liu, J.Z., Chang, I.C., Irons, S., Klavins, P., Shelton, R.N., Song, K. and Wasserman, S.R., Appl. Phys. Lett. 66 32188 (1995).Google Scholar
5. Hawley, M.E., Wu, X.D., Arendt, P.N., Adams, C.D., Hundley, M.F. and Heffher, R.H., Proc. Symp. Mater. Res. Soc. 401 531 (1995).Google Scholar
6. Hwang, H.Y., Palstra, T.T.M., Cheong, S-W. and Batlogg, B., Phys. Rev. B 52 15046 (1995).Google Scholar
7. Ibarra, M.R., Algarabel, P.A., Marquina, C., Basco, J. and Garcia, J., Phys. Rev. Lett. 75 3541 (1995).Google Scholar
8. Jin, S., Tiefel, ?.?., McCormack, M., O'Bryan, H.M., Chen, L.H., Ramesh, R. and Schurig, D., Appl. Phys. Lett. 67 557 (1995).Google Scholar
9. Kwon, C., Kim, K.-C., Robson, M.C., Lofland, S.E., Bhagat, S.M., Venkatesan, T., Ramesh, R. and Gomez, R.D., submitted to J. Mag. Magn. Mater.Google Scholar
10. Lecoeur, P., Trouillard, P.L., Xiao, Gang, Gupta, A., Ging, G.Q., Li, X.W., to be published in J. Appl. Phys.Google Scholar
11. Lofland, S.E., Bhagat, S.M., Lu, H.L., Xiong, G.C., Venkatesan, T., Greene, R. L., J. Appl. Phys. 79 5166 (1996).Google Scholar
12. Suzuki, Y., Hwang, H.Y., Cheong, S-W., van Dover, R.B., Appl. Phys. Lett. 71 142 (1997).Google Scholar
13. Perekalina, T.M., Lipinski, I.E., Timofeva, V.A. and Cherkezyan, S.A., Sov. Phys. Solid State 32 1827 (1990).Google Scholar
14. Gyorgy, E.M., Sturge, M.D., Van Uitert, L.G., Heilner, E.J., Grodkiewicz, W.H., J. App. Phys. 44 438 (1973).Google Scholar
15. Rosencwaig, A., Tabor, W.J., Pierce, R.D., Phys. Rev. Lett. 26 779 (1971).Google Scholar
16. Hellman, F., Gyorgy, E.M., Dynes, R.C., Phys. Rev. Lett. 68 1391 (1992).Google Scholar