Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T10:23:16.614Z Has data issue: false hasContentIssue false

Macro and Microstructural Effects of the Application of an Induced Axial Magnetic Field During the Deposition of Aluminum Weld Beads

Published online by Cambridge University Press:  01 February 2011

M. A. García
Affiliation:
Instituto de Investigaciones Metalúrgicas. Universidad Michoacana de San Nicolás de Hidalgo. Apdo. postal 888, Centro, C.P. 58000. Morelia, Mich., México. E-mail: crazyfim@gmail.com.
V. H. López M.
Affiliation:
Instituto de Investigaciones Metalúrgicas. Universidad Michoacana de San Nicolás de Hidalgo. Apdo. postal 888, Centro, C.P. 58000. Morelia, Mich., México. E-mail: crazyfim@gmail.com.
R. García H.
Affiliation:
Instituto de Investigaciones Metalúrgicas. Universidad Michoacana de San Nicolás de Hidalgo. Apdo. postal 888, Centro, C.P. 58000. Morelia, Mich., México. E-mail: crazyfim@gmail.com.
F. F. Curiel L.
Affiliation:
Instituto de Investigaciones Metalúrgicas. Universidad Michoacana de San Nicolás de Hidalgo. Apdo. postal 888, Centro, C.P. 58000. Morelia, Mich., México. E-mail: crazyfim@gmail.com.
R. R. Ambríz R.
Affiliation:
Instituto de Investigaciones Metalúrgicas. Universidad Michoacana de San Nicolás de Hidalgo. Apdo. postal 888, Centro, C.P. 58000. Morelia, Mich., México. E-mail: crazyfim@gmail.com.
Get access

Abstract

In this work, aluminum weld beads were deposited on aluminum plates of commercial purity (12.7 mm thick), using an ER-5356 filler wire. The aim of the experiments was to assess the effects that yield the induction of an axial magnetic field (AMF) during the application of the weld beads using the direct current gas metal arc welding process (DC-GMAW). An external power source was use to induce magnetic fields between 0 to 28 mT. The effects of the magnetic fields were assessed in terms of the macrostructural features of the deposits, morphology of the grain structure, grain size and grain size distribution in the weld metal. Macrostructural characteristics of the weld beads revealed that increasing the intensity of the magnetic induction to produce a magnetic field above 14 mT, leads to a significant loss of feeding material and there is a tendency of the deposits to increase their width and reduce penetration. Perturbation of the weld pool induced by the application of the AMF noticeably modified the grain structure in the weld metal. In particular, for the intensities of 5 and 14 mT, columnar growth was essentially non-existent. Grain size distribution plots showed, generally speaking, that the use of magnetic fields is an efficient method to produce homogeneous grain structures within the weld metal. Finite element analysis was used to explain the weld bead geometry with the intensity of the magnetic field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mousavi, M. G., Hermans, M. J. M., Richardson, I. M., den Ouden, G., Sci Technol Weld Joining, Vol. 8(4), 309312. (2003).Google Scholar
2. Kou, S., Welding Metallurgy. 2ed. W. Interscience. (2003), Canada.Google Scholar
3. Matsuda, F., Nakata, K., Tsukamoto, K., Arai, K, Trans. JWRI, Vol. 12(2), 253262 (1983).Google Scholar
4. Campanella, T., Charbon, C., Rappaz, M., Met Mater Trans, Vol. 35A, 32013210 (2004).Google Scholar
5. Jones, L. A., Eagar, T. W., Lang, J. H., J. Phys. 31, 93106 (1998).Google Scholar
6. Barrera C., G., Ambriz R., R. R., García H., R., Foro de Ingeniería e Investigación en Materiales, Vol. 3, 115120 (2006).Google Scholar
7. Pearce, B. P., Kerr, H. W., Met Mat Trans., Vol. 12B, 479486 (1981).Google Scholar
8. Kang, Y. H., Na, S. J., Welding Journal, 93s99s (2003).Google Scholar
9. Mousavi, M. G., Yudodibroto, B. Y., den Ouden, G., Netherlands Institute for Metals Research, Delft University of Technology, Delft, The Netherlands, 184190 (2001).Google Scholar
10. García, R., López, V.H., Lázaro, Y., Aguilera, J., Soldagem Insp., Vol. 12(4), 300304 (2007).Google Scholar