Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T09:43:50.011Z Has data issue: false hasContentIssue false

Luminescent Characteristics of InGaAsP/InP Multiple Quantum Well Structures by Impurity-Free Vacancy Disordering

Published online by Cambridge University Press:  21 March 2011

J. Zhao
Affiliation:
Department of Physics & Institute of Materials Science, Tianjin Normal University, Tianjin 300074, P. R. China.
X. D. Zhang
Affiliation:
Department of Physics & Institute of Materials Science, Tianjin Normal University, Tianjin 300074, P. R. China.
Z. C. Feng
Affiliation:
Axcel photonics, 45 Bartlett Street, Marlborough, MA 01752, USA
J. C. Deng
Affiliation:
Department of Physics & Institute of Materials Science, Tianjin Normal University, Tianjin 300074, P. R. China. Department of Materials Science, National University of Singapore, 119260 Singapore
P. Jin
Affiliation:
College of Physics, Nankai University, Tianjin 300074, P. R. China.
Y. C. Wang
Affiliation:
Department of Physics & Institute of Materials Science, Tianjin Normal University, Tianjin 300074, P. R. China.
G. Xu
Affiliation:
Department of Materials Sci. & Engineering, McMaster University, Hamilton, Canada L8S 4L7
Get access

Abstract

InGaAsP/InP multiple quantum wells have been prepared by Impurity-Free Vacancy Disordering (IFVD). The luminescent characteristics was investigated using photoluminescence (PL) and photoreflectance (PR), from which the band gap blue shift was observed. Si3N4, SiO2 and SOG were used for the dielectric layer to create the vacancies. All samples were annealed by rapid thermal anne aling (RTA). The results indicate that the band gap blue shift varies with the dielectric layers and annealing temperature. The SiO2 capping was successfully used with an InGaAs cladding layer to cause larger band tuning effect in the InGaAs/InP MQWs than the Si3N4 capping with an InGaAs cladding layer. On the other hand, samples with the Si3N4-InP cap layer combination also show larger energy shifts than that with SiO2-InP cap layer combination.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

1. Laiding, W. D., Holonyak, N. Jr, Camras, M. D., Hess, K., Jcoleman, J., Dapkus, P. D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).Google Scholar
2. Gdeepe, D., Holonyak, N. Jr, J. Appl. Phys. 64, R93 (1988).Google Scholar
3. Marsh, J. H., Hansen, S. I., Bryce, A. C., and Rue, R. M. De La, Opt. Quantum Electron. 23 941 (1991).10.1007/BF00624983Google Scholar
4. Andrew, S. R., Marsh, J. H., Holland, M. C., and Kean, A. H., IEEE Photon Technol. Lett. 4, 426 (1992).10.1109/68.136474Google Scholar
5. Elenkrig, B. B., Thompson, D. A., Simmons, J. G., Bruce, D. M., Zhao, Yu. Si. Jie, Evans, J. D., and Templeton, I. M., Appl. Phys. Lett. 65 (10), 1239 (1994).10.1063/1.112082Google Scholar
6. Paquette, M., Beauvais, J., Beerens, J., Poole, P. J., Charbonneau, S., Miner, C. J., and Blaauw, C., Appl. Phys. Lett. 71 (26), 3749 (1997).10.1063/1.120407Google Scholar
7. Li, G., Chua, S. J., Xu, S. J., Wang, X. C., Helmy, A. Saher, Ke, Mao-Long, and Marsh, J. H., Appl. Phys. Lett. 73 (23), 3393 (1998).10.1063/1.122777Google Scholar
8. Li, G., Chua, S. J., Teng, J. H., Wang, W., Feng, Z. C., Huang, H., and Osipowicz, T., J. Vac. Sci. Technol. B 17 (4), 1507 (1999).Google Scholar
9. O'Brien, S., Shealy, J. R., Bour, D. P., Elbaum, L., and Chi, J. Y., Appl. Phys. Lett. 56, 1365 (1990).Google Scholar
10. Burkner, S., Maier, M., Larkins, E. C., Rothemund, w., O'Reilly, E. P., and Ralston, J. D., J. Electron. Mater. 24, 805 (1995).Google Scholar