Skip to main content Accessibility help
×
Home

Luminescence enhancement of colloidal quantum dots by strain compensation

  • Y. Lu (a1), Y.Q. Zhang (a1) and X. A. Cao (a1)

Abstract

We have investigated the effects of two different strain-relief bilayer shell structures on the luminescent properties of colloidal CdSe quantum dots (QDs). CdSe QDs with a strain-compensated ZnS/ZnCdS bilayer shell were synthesized using the successive ion layer adsorption and reaction technique and their crystallinity of was examined by X-ray diffraction. The QDs enjoyed the benefits of excellent exciton confinement by the ZnS intermediate shell and strain compensation by the ZnCdS outer shell. The resulting CdSe/ZnS/ZnCdS QDs exhibited 40% stronger photoluminescence and a smaller peak redshift upon shell growth compared to conventional CdSe/ZnCdS/ZnS core/shell/shell QDs with an intermediate lattice adaptor. CdSe/ZnS/ZnCdS QD light-emitting diodes (LEDs) had a luminance of 558 cd/m2 at 20 mA/cm2, 28% higher than that of CdSe/ZnCdS/ZnS QD-LEDs. The former also had better spectral purity. These results suggest that nanocrystal shells may be strain-engineered in a different way to achieve QDs of high crystalline and optical quality well suited for full-color display applications.

Copyright

References

Hide All
1. Talapin, D. V., Lee, J. S., Kovalenko, M. V., Shevchenko, E. V., Chem. Rev. 110 (1), 389458 (2010).
2. Rogach, A. L., Gaponik, N., Lupton, J. M., Bertoni, C., Gallardo, D. E., Dunn, S., Pira, N. L., Paderi, M., Repetto, P., Romanov, S. G., O’Dwyer, C., Torres, M. S., and Eychmuller, A., Angew. Chem., Int. Ed. 47 (35), 65386549 (2008).
3. Reiss, P., Protie`re, M., and Li, L., Small 5 (2), 154168 (2009).
4. Mews, A., Z. Phys. Chem. 221, 295306 (2007).
5. Zhang, Y. Q., Cao, X. A., Appl. Phys. Lett. 97, 253115 (2010).
6. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R., Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M., J. Phys. Chem. B 101 (46), 94639475 (1997).
7. Reiss, P., Carayon, S., Bleuse, J., Pron, A., Synthetic Metals 139 (3), 649652 (2003).
8. Talapin, D. V., Mekis, I., Goltzinger, S., Kornowski, A., Benson, O., Weller, H., J. Phys. Chem. B 108 (49), 1882618831 (2004).
9. McBride, J., Treadway, J., Feldman, L. C., Pennycook, S. J., Rosenthal, S. J., Nano Lett. 6 (7), 14961501 (2006).
10. Xie, R., Kolb, U., Li, J., Basche, T., Mews, A., J. Am. Chem. Soc. 127 (20), 74807488 (2005).
11. Li, J. J., Wang, Y. A., Guo, W. Z., Keay, J. C., Mishima, T. D., Johnson, M. B., and Peng, X. G., J. Am. Chem. Soc. 125 (41), 1256712575 (2003).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed