Skip to main content Accessibility help
×
Home

Low-Temperature Operation of Green, Blue and UV InGaN/GaN Multiple-Quantum-Well Light-Emitting Diodes

  • X. A. Cao (a1), S. F. LeBoeuf (a1), J. L. Garrett (a1), A. Ebong (a1), L. B. Rowland (a1) and S. D. Arthur (a1)...

Abstract

Absract:

Temperature-dependent electroluminescence (EL) of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission energies ranging from 2.3 eV (green) to 3.3 eV (UV) has been studied over a wide temperature range (5-300 K). As the temperature is decreased from 300 K to 150 K, the EL intensity increases in all devices due to reduced nonradiative recombination and improved carrier confinement. However, LED operation at lower temperatures (150-5 K) is a strong function of In ratio in the active layer. For the green LEDs, emission intensity increases monotonically in the whole temperature range, while for the blue and UV LEDs, a remarkable decrease of the light output was observed, accompanied by a large redshift of the peak energy. The discrepancy can be attributed to various amounts of localization states caused by In composition fluctuation in the QW active regions. Based on a rate equation analysis, we find that the densities of the localized states in the green LEDs are more than two orders of magnitude higher than that in the UV LED. The large number of localized states in the green LEDs are crucial to maintain high-efficiency carrier capture at low temperatures.

Copyright

References

Hide All
1. Mukai, T., Yamada, M., and Nakamura, S., Jpn. J. Appl. Phys. 38, 3976 (1999).
2. Lester, S. D., Ponce, F. A., Craford, M.G. and Steigerwald, D. A., Appl. Phys. Lett. 66, 1249 (1995).
3. Eliseev, P. G., Perlin, P., Lee, J., and Osinski, M., Appl. Phys. Lett. 71, 569 (1997).
4. Hori, A., Yasunaga, D., Satake, A. and Fujiwara, K., Appl. Phys. Lett. 79, 3723 (2001).
5. Teo, K. L., Colton, J. S., Yu, P.Y., Weber, E. F., Li, M. F., Liu, W., Uchida, K., Tokunaga, H., Akustu, N., and Matsumoto, K., Appl. Phys. Lett. 73, 69 (1998).
6. Cho, Y. H., Gainer, G. H., Fischer, A. J., Song, J. J., Keller, S., Mishra, U. K. and DenBaars, S. P., Appl. Phys. Lett. 73, 1370 (1998).
7. Narukawa, Y., Kawakami, Y., Fujita, S., Fujita, S. and Nakamura, S., Phys. Rev. B 55, 1938 (1997).
8. Smith, M., Chen, G. D., Lin, J.Y., Jiang, H.X.. Khan, M. A. and Chen, Q., Appl. Phys. Lett. 69, 2837 (1996).
9. Krestnikov, I. L., Ledentsov, N. N., Hoffmann, A., Bimberg, D., Sakharov, A. V., Lundin, W. V., Tsatsulnikov, A. F., Usikov, A. S., Alferov, Z. I., Musikhin, Y. G., and Gerthsen, D., Phys. Rev. B 66, 155310 (2002).
10. Martin, R. W., Middleton, P.G., O'Donnell, K. P., and VanderStricht, W., Appl. Phys. Lett. 74, 263 (1999).
11. Yang, H. C., Kuo, P.F., Lin, T. Y., Chen, Y.F., Chen, K. H., Chen, L. C. and Chyi, J. I., Appl. Phys. Lett. 76, 3712 (2000).
12. O'Donnell, K. P., Martin, R. W., and Middleton, P. G., Phys. Rev. Lett. 82, 237 (1999).
13. Cao, X. A., Stokes, E.B., Sandvik, P., Taskar, N., Kretchmer, J. and Walker, D., Solid State Electron. 46, 1235 (2002).
14. Cao, X. A., Stokes, E.B., Sandvik, P., LeBoeuf, S. F., Kretchmer, J. and Walker, D., IEEE Electron Dev. Lett. 23, 535 (2002).
15. Shan, W., Schmidt, T. J., Yang, X. H., Hwang, S. J., and Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 66, 985 (1995).

Related content

Powered by UNSILO

Low-Temperature Operation of Green, Blue and UV InGaN/GaN Multiple-Quantum-Well Light-Emitting Diodes

  • X. A. Cao (a1), S. F. LeBoeuf (a1), J. L. Garrett (a1), A. Ebong (a1), L. B. Rowland (a1) and S. D. Arthur (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.