Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T15:24:41.981Z Has data issue: false hasContentIssue false

Low Temperature Growth of Carbon Nanotubes and Nanofibres

Published online by Cambridge University Press:  01 February 2011

J Robertson
Affiliation:
Engineering Dept, Cambridge CB2 1PZ, UK
S Hofmann
Affiliation:
Engineering Dept, Cambridge CB2 1PZ, UK
B Kleinsorge
Affiliation:
Engineering Dept, Cambridge CB2 1PZ, UK
V Golokov
Affiliation:
Chemistry Dept, Cambridge CB2 1PZ, UK
C Ducati
Affiliation:
Materials Science Dept, Cambridge University, Cambridge CB2 1PZ, UK
J Geng
Affiliation:
Chemistry Dept, Cambridge CB2 1PZ, UK
M Cantoro
Affiliation:
Engineering Dept, Cambridge CB2 1PZ, UK
B Boskovic
Affiliation:
Engineering Dept, Cambridge CB2 1PZ, UK
W Huck
Affiliation:
Engineering Dept, Cambridge CB2 1PZ, UK
B F G Johnson
Affiliation:
Engineering Dept, Cambridge CB2 1PZ, UK
Get access

Abstract

This paper reviews work on low temperature growth of carbon nanotubes, on Si, on plastic, on carbon cloth, using sputtered and colloidal catalysts, and with nano-imprinted patterning.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seidel, R, Liebau, M, Duesberg, G S, Kreupl, F, Unger, E, Graham, A P, Hoenlien, W, Pompe, W, Nanolett 3 965 (2003)Google Scholar
2. Sun, X, Li, R., Villers, D., Dodelet, J. P., Desilets, S., Chem Phys Lett 379 99 (2003)Google Scholar
3. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science 282, 1105 (1998).Google Scholar
4. Merkulov, V. I., Lowndes, D. H., Wei, Y. Y., Eres, G., and Voelkl, E., Appl. Phys. Lett. 76, 3555 (2000).Google Scholar
5. Bower, C, Zhou, O, Zhu, W, Werder, D J and Jin, S, App Phys Lett 77 2767 (2000)Google Scholar
6. Chhowalla, M., Teo, K. B. K., Ducati, C., Rupesinghe, N. L., Amaratunga, G. A. J., Ferrari, A. C., Roy, D., Robertson, J., and Milne, W. I., J. Appl. Phys. 90, 5308 (2001).Google Scholar
7. Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., Hasko, D. G., Pirio, G., Legagneux, P., Wyczisk, F., and Pribat, D., Appl. Phys. Lett. 79, 1534 (2001).Google Scholar
8. Boskovic, B O, Stolojan, V, Khan, R U A, Haq, S, Silva, S R P, Nature Materials 1 165 (2002)Google Scholar
9. Hofmann, S, Ducati, C, Robertson, J, Kleinsorge, B, Appl. Phys. Lett., 83, 135 (2003).Google Scholar
10. Turban, G, et al, App Phys Lett (2004)Google Scholar
11. Ducati, C., Alexandrou, I., Chhowalla, M., Amaratunga, G. A. J., and Robertson, J., J. Appl. Phys. 92, 3299 (2002).Google Scholar
12. Merkulov, V. I., Guillorn, M. A., Lowndes, D. H., Simpson, M. L., and Voelkl, E., Appl. Phys. Lett. 79, 1178 (2001).Google Scholar
13. Bachmann, P B, private communicationGoogle Scholar
14. Baker, R. T. L. and Barber, M. A., in Chemistry and Physics of Carbon, edited by Walker, P. L. and Thrower, P. A. (Dekker, New York, 1978), Vol. 14, pp. 83 Google Scholar
15. Geohegan, D et al, App Phys Lett (2003)Google Scholar
16. Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P. L., Clausen, B. S., Rostup-Nielsen, J. R., Abild-Pedersen, F., Norskov, J. K., Nature 427 (2004) 426429 Google Scholar
17. Hofmann, S, Ducati, C, Kleinsorge, B, Robertson, J, Appl. Phys. Lett., 83, 4661 (2003)Google Scholar
18. Kind, H, Bonard, J M, Forro, L, Kern, K, Hernadi, K, Nilsson, L O, Schlapbach, L, Langmuir 16 6877 (2000)Google Scholar
19. Ago, H, Murata, K, Yumura, M, Yotani, J, Uemura, S, Appl. Phys. Lett. 82 811 (2003)Google Scholar
20. Kleinsorge, B, Golovko, V B, Hofmann, S, Geng, J, Jefferson, D, Robertson, J, Johnson, B F G, Chem. Comm., (12), 1416 (2004).Google Scholar
21. Chen, J. P., Lee, K. M., Sorensen, C. M., Klabunde, K. J. and Hadjipanayis, G. C., J Appl Phys 75 5876 (1994)Google Scholar
22. Dai, L, Patil, A, Gong., X, Guo, Z, Liu, L, Liu, Y, Zhu, D, Chem. Phys. Chem. 4, 1150 (2003)Google Scholar
23. Dai, H, Acc. Chem. Res., 35, 1035 (2002).Google Scholar
24. Tsukruk, V V, Ko, H, Peleshanko, S, Phys. Rev. Let 92, 065502 (2004)Google Scholar
25. Teo, K B K, Lee, S B, Chhowalla, M, Semet, V, Binh, V T, Groening, O, Castignolles, M, Loiseau, A, Pirio, G, Legagneaux, P, Pribat, D, Hasko, D G, Ahmed, H, Amaratunga, G A J, Milne, W I, Nanotechnology 14 204 (2003)Google Scholar
26. Huang, Z P, Carnahan, D L, Rybczynski, J, Giersig, M, Sennett, M, Wang, D Z, Wen, J G, Kempa, K, Ren, Z F, App Phys Lett 82 460 (2003)Google Scholar
27. Cheng, J Y, Ross, C A, Chan, V Z H, Thomas, E L, Lammertink, R G H, Vancso, G J, Adv Mat 13 1174 (2001)Google Scholar
28. Nilsson, L, Groning, O, Emmenegger, C, Kuttel, O, Schaller, E, Schlapbach, L, Kind, H, Bonard, J M, Kern, K, App Phys Lett 76 2071 (2000)Google Scholar
29. Xia, Y N, Whitesides, G M, Adv Mater 8 765 (1996)Google Scholar
30. Li, H W, Muir, B V O, Fichet, G, Huck, W T S, Langmuir 19, 1963 (2003)Google Scholar
31. Golovko, V. B., Li, H.-W., Kleinsorge, B., Hofmann, S., Geng, J., Cantoro, M., Jefferson, D. A., Johnson, B. F. G., Huck, W. T. S., Robertson, J., submitted to App Phys Letts.Google Scholar