Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T07:18:00.994Z Has data issue: false hasContentIssue false

Low Temperature Anneal of the Divacancy in P-Type Silicon

Published online by Cambridge University Press:  26 February 2011

M.-A. Trauwaert
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, BELGIUM
J. Vanhellemont
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, BELGIUM
H. E. Maes
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, BELGIUM
A.-M. Van Bavel
Affiliation:
K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, BELGIUM
G. Langouche
Affiliation:
K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, BELGIUM
A. Stesmans
Affiliation:
K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, BELGIUM
P. Clauws
Affiliation:
U. Gent, Krijgslaan 281-S1, B-9000 Gent, BELGIUM
Get access

Abstract

Results are reported of a Deep Level Transient Spectroscopy (DLTS) study of the conversion of the divacancy, with energy level at Ev+0.19eV, to a level at Ev+0.24eV after anneal at temperatures below its dissociation temperature (300°C). In literature both levels have been associated with the donor level of the divacancy.

Diodes processed on p-type Float Zone (FZ) and Czochralski (Cz) silicon wafers with boron concentration between 0.2 and 3E15 cm−3 are irradiated with 2 MeV electrons. Before and after anneal (200°C and 250°C) DLTS spectra are recorded to get a full electrical characterisation of the induced defects.

The observed conversion is proposed to be a gradual transformation of the divacancy to a divacancy-oxygen complex.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Drevinsky, P. J., Caefer, C. E., Kimerling, L. C. and Benton, J. L., Defect control in Semiconductors (Amsterdam, Elsevier, 1990), p. 341.Google Scholar
2 Londos, C. A., Phys. Rev. B 35, 7511 (1987).Google Scholar
3 Asghar, M., Zafar Iqbal, M. and Zafar, N., J. Appl. Phys. 73, 4240 (1993).Google Scholar
4 Mooney, P. M., Cheng, L. J., Suli, M., Gerson, J. D. and Corbett, J. W., Phys. Rev. B 15, 3836 (1977).Google Scholar
5 Watkins, G. D. and Corbett, J. W., Phys. Rev. 138, 543 (1965).Google Scholar
6 Kimerling, L. C., Proceedings of the International Conference on Radiation Effects in Semiconductors (Dubrovnic, 1976), p. 221.Google Scholar
7 Londos, C. A., Phys. Stat. Solidi (a) 132, 43 (1992).Google Scholar
8 Wang, F. P., Sun, H. H. and Lu, F., J. Appl. Phys. 68, 1535 (1990).Google Scholar
9 Meijer, E. and Grimmeiss, H. G., J. Appl. Phys. 55, 4266 (1984).Google Scholar
10 Ferenczi, G., Londos, C. A., Pavelka, T., Somogyi, M. and Mertens, A., J. Appl. Phys. 63, 183 (1988).Google Scholar
11 Vanhellemont, J., Kaniava, A., Simoen, E., Trauwaert, M.-A., Claeys, C., Johlander, B., Harboe-Sörensen, R., Adams, L. and Clauws, P., IEEE Trans. Nucl. Sci. 41, 479 (1994).Google Scholar
12 Kimerling, L. C., Asom, M. T., Benton, J. L., Drevinsky, P. J. and Caefer, C. E., Materials Science Forum 3841, 141 (1989).Google Scholar
13 Trauwaert, M.-A, Vanhellemont, J., Maes, H. E., Van Bavel, A.-M., Langouche, G. and Clauws, P., Appl. Phys. Lett., in press, May (1995).Google Scholar
14 Lee, Y.-H. and Corbett, J. W., Phys. Rev. B 13, 2653 (1976).Google Scholar