Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T09:58:38.476Z Has data issue: false hasContentIssue false

Low Energy Plasma Enhanced Chemical Vapour Deposition - Plasma Enhanced Deposition of Epitaxial Si and Sige

Published online by Cambridge University Press:  17 March 2011

Carsten Rosenblad
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland Unaxis Semiconductors, FL-9496 Balzers, Principality of Liechtenstein
Matthias Kummera
Affiliation:
Interstate University of Applied Science Buchs, CH-9471 Buchs, Switzerland
Hans-Rudolf Deller
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland
Thomas Graf
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland
Alex Dommann
Affiliation:
Interstate University of Applied Science Buchs, CH-9471 Buchs, Switzerland
Thomas Hackbarth
Affiliation:
DaimlerChrysler Research and Technology, D-89081 Ulm, Germany
Georg Höck
Affiliation:
Department of Electron Devices and Circuits, University of Ulm, D-89081 Ulm, Germany
Elisabeth Müller
Affiliation:
Laboratorium für Mikro- und Nanostrukturen, PSI, CH-5232 Villigen, Switzerland
Hans von Känel
Affiliation:
Laboratorium für Festkörperphysik, ETH-Zürich, CH-8093 Zürich, Switzerland
Get access

Abstract

Low energy plasma enhanced chemical vapour deposition (LEPECVD) is a deposition technique developed for the epitaxy of Si and SiGe at ultra-high deposition rates. Due to a high current plasma discharge composed of low energy particles, a high plasma enhancement can be obtained without any accompanying plasma induced damage of the wafer surface. The most important application of LEPECVD so far is for compositionally graded relaxed SiGe buffer layers. Such relaxed buffer layers are demonstrated with end composition up to pure Ge and with a growth time below 1 hour. A p-type hetero-MOSFET formed in a SiGe channel compressively strained to a Si0.5Ge0.5 relaxed buffer layer, is demonstrated as one example where the high growth rates of LEPECVD allows the synthesis of devices which cannot be produced with an acceptable throughput with conventional deposition methods. The room temperature effective hole mobility of 760 cm2/Vs obtained on such devices demonstrates a high structural and electrical quality of the LEPECVD material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Korner, N., Beck, E., Dommann, A., Onda, N., Ramm, J., Surf. Coat. Technol. 76–77, 731 (1995)Google Scholar
2.Murty, M.V. Ramana, Atwater, H.A., Phys. Rev., B 45, 1507 (1992)Google Scholar
3.Rosenblad, C., Buschbeck, M., Ramm, J., unpublishedGoogle Scholar
4.Meyerson, B.S., Uram, K., LeGoues, F.K., Appl. Phys. Lett. 53, 2555 (1988)Google Scholar
5.Bamblett, T., Lu, Q., Karasawa, T., Hasan, M.-A., Jo, S., Greene, J., J. Appl. Phys., 77, 1504 (1995) and J. Appl, Phys., 76, 1884 (1994)Google Scholar
6.Joo, S.-J., Hwang, E.Y.S.-H., Whang, K.-W., Chun, S., Kim, Y.D., Thin Solid Films, 321, 111 (1998)Google Scholar
7.LeGoues, F. K., Meyerson, B. S., Morar, J., Phys. Rev. Lett., 66, 2903 (1991)Google Scholar
8.Fitzgerald, E., et al. Appl. Phys. Lett., 59, 811 (1991)Google Scholar
9.LeGoues, F.K., Meyerson, B.S., Morar, J.F., and Kirchner, P.D., J. Appl. Phys., 71, 4230 (1992)Google Scholar
10.Schäffler, F., Többen, D., Herzog, H.-J., Abstreiter, G., Holländer, B., Semicond. Sci. Technol., 12, 7 (1992)Google Scholar
11.Hull, R., Bean, J., Eaglesham, D., Bonar, J., Buescher, C., Thin Solid Films, 183, 117 (1989)Google Scholar
12.Hackbarth, T., Kibbel, H., Glück, M., Höck, G., Herzog, H., Thin Solid Films, 321, 136 (1998)Google Scholar
13.Churchill, A., Robbins, D., Wallis, D., Griffin, N., Paul, D. J., Pidduck, A., Semicond. Sci. Technol., 12, 943 (1997)Google Scholar
14.Ismail, K., Arafa, M., Saenger, K., Chu, J., Meyerson, B., Appl. Phys. Lett., 66, 1077 (1995)Google Scholar
15.Samavedam, S.B., Currie, M.T., Langdo, T.A., Fitzgerald, E.A., Appl. Phys. Lett., 73, 2125 (1998)Google Scholar
16.Currie, M.T., Samavedam, S.B., Langdo, T.A., Leitz, C.W., Fitzgerald, E.A., Appl. Phys. Lett., 81, 3108 (1997)Google Scholar
17.Luan, H.-C., Lim, D. R., Lee, K.K., Chen, K.M.. Sanderland, J.G., Wada, K., Kimberling, L. C., Appl. Phys. Lett., 75, 2909 (1999)Google Scholar
18.Sutter, P., Kafader, U., and Känel, H. von, Sol. Energy Mater. Sol. Cells, 71, 541 (1994)Google Scholar
19.Fukuda, Y. and Kohama, Y., J. Cryst. Growth, 81, 451 (1987)Google Scholar
20.Colace, L., et al. Solid State Phenom., 54, 55 (1997)Google Scholar
21.LeGoues, F., MRS Bulletin (4), 38 (1996)Google Scholar
22.Rosenblad, C., Kummer, M., Dommann, A., Müller, E., Gusso, M., Tapfer, L., Känel, H. von, Mat. Sci. Eng. B74, 113 (2000)Google Scholar
23.Takagi, S., Toriumi, A., Iwase, M., Tango, H., IEEE Trans, Electron. Devices, 41, 2357 (1994)Google Scholar
24.Sze, S., Physics of Semiconductor Devices, Wiley, 1981 Google Scholar
25.Schäffler, F., Semicond. Sci. Technol., 12, 1515 (1997)Google Scholar
26.Parker, E., Whall, T., Solid State Electronics, 43, 1497 (1999)Google Scholar
27.Höck, G., Glück, M., Hackbarth, T., Herzog, H.-J., Kohn, E., Thin Solid Films, 336, 141 (1998)Google Scholar
28.Höck, G., Kohn, E., Rosenblad, C., Känel, H. von, Herzog, H.-J., König, U., Appl. Phys. Lett., 76, 3920 (2000)Google Scholar