Skip to main content Accessibility help
×
Home

Low Energy Implantation and Transient Enhanced Diffusion: Physical Mechanisms and Technology Implications

  • N. E. B. Cowern (a1), E. J. H. Collart (a1), J. Politiek (a1), P. H. L. Bancken (a1), J. G. M. Van Berkum (a1), K. Kyllesbech Larsen (a1), P.A Stolk (a1), H. G. A. Huizing (a1), P. Pichler (a2), A. Burenkov (a2) and D. J. Gravesteijn (a1)...

Abstract

Low energy implantation is currently the most promising option for shallow junction formation in the next generations of silicon CMOS technology. Of the dopants that have to be implanted, boron is the most problematic because of its low stopping power (large penetration depth) and its tendency to undergo transient enhanced diffusion and clustering during thermal activation. This paper reports recent advances in our understanding of low energy B implants in crystalline silicon. In general, satisfactory source-drain junction depths and sheet resistances are achievable down to 0.18 micron CMOS technology without the need for implantation of molecular species such as BF2. With the help of defect engineering it may be possible to reach smaller device dimensions. However, there are some major surprises in the physical mechanisms involved in implant profile formation, transient enhanced diffusion and electrical activation of these implants, which may influence further progress with this technology. Some initial attempts to understand and model these effects will be described.

Copyright

References

Hide All
[1] Collart, E.J.H., Weemers, K., Gravesteijn, D.J., and van Berkum, J.G.M., Proc. 4th Int. Workshop on Measurement, Characterization and Modeling of Ultrashallow Doping Profiles in Semiconductors (Research Triangle Park, NC, April 6-9, 1997)
[2] Stippel, H. and Selberherr, S., IEICE Trans. Electronics, E77–C, 118 (1994)
[3] van Berkum, J.G.M., Collart, E.J.H., Weemers, K., Gravesteijn, D.J., Iltgen, K., Ben-ninghoven, A., and Niehuis, E., Proc. 4th Int. Workshop on Measurement, Characterization and Modeling of Ultrashallow Doping Profiles in Semiconductors (Research Triangle Park, NC, April 6-9, 1997)
[4] Kyllesbech Larsen, K., Privitera, V., Coffa, S., Priolo, F., Campisano, S.U., Camera, A., Phys. Rev. Lett. 76, 1493 (1996)
[5] Gilmer, G.H., Diaz de la Rubia, T., Stock, D.M., and Jaraiz, M., Nucl. Instrum. Methods B102, 247 (1995)
[6] Watkins, G.D., Phys. Rev. B12, 5824 ()1975;
Troxell, J.R. and Watkins, G.D., Phys. Rev. 22, 921 (1980)
[7] Cowern, N.E.B., van de Walle, G.F.A., Zalm, P.C., and Oostra, D.J., Phys. Rev. Lett. 69, 116 (1992)
[8] Cowern, N.E.B., van de Walle, G.F.A., Gravesteijn, D.J., and Vriezema, C.J., Phys. Rev. Lett. 67, 212 (1991)
[9] Nishikawa, S., Tanaka, A., and Yamaji, , Appl. Phys. Lett. 60, 1370 (1992)
[10] Cowern, N.E.B., Cacciato, A., Custer, J.S., Saris, F.W., and Vandervorst, W., Appl. Phys. Lett. 68, 1150 (1996).
[11] Davies, G. and Newman, R.C. in Carbon in Mono-crystalline Silicon, in “Materials, Properties and Preparation”, Vol. 3b., Handbook of Semiconductors, edited by Moss, T.S. and Mahajan, S., (Noth-Holland, Amsterdam) Chap. 21, pp. 15571636 (1994)
[12] Collart, E.J.H., Weemers, K., Gravesteijn, D.J., van Berkum, J.G.M., and Cowern, N.E.B., paper in these Proceedings.
[13] Cowern, N.E.B., Appl. Phys. Lett. 64, 2646 (1994).
[14] A similar assumption has been used by Rafferty and coworkers in Appl. Phys. Lett. 68, 2395 (1996), to model the evolution of {113} defects during TED.
[15] Pichler, P., Jüngling, W., Selberherr, S., Guerrero, E., and Pötzl, H. W., IEEE Trans. Computer-Aided Design 4, 384 (1985)
[16] Stolk, P., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., and Haynes, T.E., J. Appl. Phys. (in press).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed