Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-18T22:34:42.137Z Has data issue: false hasContentIssue false

Long Time Dynamics of the Transverse Ising Model - Comparison With Data onLiTbF4

Published online by Cambridge University Press:  01 January 1992

Surajit Sen
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824
João Florencio Jr
Affiliation:
Department of Physics, Pennsylvania State University, Altoona, PA 16601
Zhi-Xiong Cai
Affiliation:
Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973
Get access

Abstract

We use the continued fraction formalism (CFF) to obtain the zz- component of the dynamical spin pair correlations of a transverse Ising model (TIM) in 2D at T = ∞ for the first time. Our calculations suggest that the correlation function decays algebraically at long times as t−α, 1.5 < α < 2.2, which is slower than gaussian decay found for the corresponding dynamical correlation in 1D. The calculations suggest that the corresponding dynamical correlation in 3 D is also likely to exhibit a power law decay. Our results compare favorably with the neutron scattering data on LiTbF4, for T > Tc, an induced moment ferromagnet.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Balucani, U. et al. eds. Magnetic Excitations and Fluctuations II (Springer, Berlin, 1987).Google Scholar
2. Sen, S., Long, M., Florencio, J. Jr, and Cai, Z.-X., J. Appl. Phys. (to be published).Google Scholar
3. Dagotto, E., Int. J. Mod. Phys. B 5, 907 (1991)Google Scholar
4. Florencio, J. Jr, Sen, S., and Cai, Z.-X., J. Low Temp. Phys. (November, 1992).Google Scholar
5. Lee, M.H., Phys Rev B 26, 2547 (1982); J. Math Phys. 24, 2512 (1982); Cai, Z.-X., Sen, S., and Mahanti, S.D., Phys. Rev. Lett. 69, 1637 (1992).Google Scholar
6. Youngblood, R.W., Aeppli, G., Axe, J.D., and Griffin, J.A., Phys. Rev. Lett. 49, 1724 (1982).Google Scholar
7. Kötzler, J., Neuhaus-Steinmetz, H., Froese, A., and Görlitz, D., Phys. Rev. Lett. 60, 647 (1988).Google Scholar
8. Florencio, J. Jr, Sen, S., and Cai, Z.-X., (submitted for publication).Google Scholar
9. Lieb, E.H., Schultz, T., and Mattis, D.C., Ann. Phys. 16, 941 (1961); Katsura, S., Phys. Rev. 127, 1508 (1962).Google Scholar
10. Pytte, E., and Thomas, H., Phys Rev 175, 610 (1968); Stinchcombe, R., J. Phys.:C 6, 2484 (1973); Blinc, R., Zeks, B., and Tahir-Kheli, R.A., Phys. Rev. B 18, 338 (1978).Google Scholar
11. Tommet, T.N., and Huber, D.L., Phys. Rev. B 11, 1971 (1975).Google Scholar
12. Dumont, M., Physica 125A, 186 (1984).Google Scholar
13. Sen, S., Cai, Z.-X., and Mahanti, S.D., Phys. Rev. A 46, (December 1) (1992).Google Scholar
14. Florencio, J. Jr, and Lee, M.H., Phys. Rev. B 35, 1835 (1987)Google Scholar
15. Sen, S., Physica 186A, 285 (1992)Google Scholar