Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T14:35:15.964Z Has data issue: false hasContentIssue false

Long Luminescence Lifetime of 1.54 μ m Er3+ Luminescence from Erbium Doped Silicon Rich Silicon Oxide and its Origin

Published online by Cambridge University Press:  09 August 2011

Se-Young Seo
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1∼Kusung-dong, Yusung-gu, Taejon, Korea
Jung H. Shin
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1∼Kusung-dong, Yusung-gu, Taejon, Korea
Choochon Lee
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), 373-1∼Kusung-dong, Yusung-gu, Taejon, Korea
Get access

Abstract

The photoluminescent properties of erbium doped silicon rich silicon oxide (SRSO) is investigated. The silicon content of SRSO was varied from 43 to 33 at. % and Er concentration was 0.4–0.7 at. % in all cases. We observe strong 1.54 μ m luminescence due to 4I13/24I15/2 Er3+ 4f transition, excited via energy transfer from carrier recombination in silicon nanoclusters to Er 4f shells. The luminescent lifetimes at the room temperature are found to be 4–7 msec, which is longer than that reported from Er in any semiconducting host material, and comparable to that of Er doped SiO2 and A12O3. The dependence of the Er3+ luminescent intensities and lifetimes on temperature, pump power and on background illumination shows that by using SRSO, almost all non-radiative decay paths of excited Er3+ can be effectively suppressed, and that such suppression is more important than increasing excitation rate of Er3+. A planar waveguide using Er doped SRSO is also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ennen, H., Schneider, J., Pomrenke, G. and Axmann, A., Appl. Phys. Lett., 43, 943 (1983).Google Scholar
[2] Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 64 2842 (1994)Google Scholar
[3] Franzó, G., Priolo, F., Coffa, S., Polman, A. and Camera, A., Appl. Phys. Lett. 64 2235 (1993).Google Scholar
[4] Palm, J., Gan, F., Zheng, B., Michel, J. and Kimerling, L. C., Phys. Rev. B 54 17603 (1996)Google Scholar
[5] Torvik, J. T., Qui, C. H., Feuerstein, R. J., Pankove, J. I. and Namavar, F., J. Appl. Phys., 81 6343 (1997)Google Scholar
[6] Choyke, W. J., Devaty, R. P., Clemen, L. L., Yoganathan, M., Pensi, G. and Hässler, Ch., Appl. Phys. Lett. 65 1668 (1994)Google Scholar
[7] Shin, J. H., Kim, M., Seo, S. and Lee, C., Appl. Phys. Lett. 72 1092 (1998)Google Scholar
[8] Delerue, C., Allan, G. and Lannoo, M., Light Emission in Silicon: From Physics to Devices Semiconductors and Semimetals 49 272 (Academic Press, 1998)Google Scholar
[9] Priolo, F., Franzò, G., Coffa, S. and Camera, A., Phys. Rev. B 57 4443 (1998)Google Scholar
[10] Coffa, S., Franzò, G. Priolo, F., Polman, A. and Serna, R., Phys. Rev. B 49 16313 (1994)Google Scholar
[11] Brongersma, M. L., Polman, A., Min, K. S., Boer, E., Tambo, T. and Atwater, H. A., Appl. Phys. Lett. 72 2577 (1998)Google Scholar