Skip to main content Accessibility help

Localized Light Focusing and Super Resolution Readout via Chalcogenide Thin Film

  • Junji Tominaga (a1), Paul Fons (a2), Takayuki Shima (a3), Kazuma Kurihara (a4), Takashi Nakano (a5), Alexander Kolobov (a6) and Stephane Petit (a7)...


We have demonstrated that certain chalcogenide layers within a spinning super-RENS optical disc allow to squeeze the 650 nm laser beam to a spot size as fine as 50 nm using a 15-nm chalcogenide film. The near-field light was focused at a depth of just over 30 nm after passing through a chalcogenide film. Finite-difference time-domain (FDTD) simulations also reproduced these results. We suggest that a conductive ring aperture generated in the chalcogenide layers plays an important role in the localized light focusing.



Hide All
1. Abbe, E., Archiv. F. Mikroskop. 9, 413 (1873).
2. Kim, J., Hwang, I., Yoon, D., Park, I., D. Shin. Kikukawa, T., Shima, T., and Tominaga, J., Appl. Phys. Lett. 83, 1701 (2003).
3. Kim, J., Hwang, I., Bae, J., Lee, J., Park, H., Park, I., Kikukawa, T., Fukuzawa, N., Kobayashi, T. and Tominaga, J., Jpn. J. Appl. Phys. 45, 1370 (2006).
4. Takamori, N., Yamamoto, M., Mori, G., Tajima, H., and Takahashi, A., Jpn. J. Appl. Phys. 45, 1366 (2006).
5. Fang, J. W., Wu, C. C., Liao, A., Lin, W. C., and Tsai, D. P., Jpn. J. Appl. Phys. 45, 1383 (2006).
6. Shi, L. P., Chong, T. C., Hu, X., Li, J. M., and Miao, X. S., Jpn. J. Appl. Phys. 45, 1385 (2006).
7. Kim, S. Y., Park, S. U., Li, X. Z., Kim, S. J., and An, S. H., Jpn. J. Appl. Phys. 45, 1390 (2006).
8. Tominaga, J., Nakano, T., and Atoda, N., Appl. Phys. Lett. 73, 2078 (1998).
9. Kim, J., Hwang, I., Kim, H., Yoon, D., Park, I., Shin, D., Park, Y., and Tominaga, J., Jpn. J. Appl. Phys. 43, 4921 (2004).
10. Tominaga, J. and Nakano, T., Optical Near-Field Recording, Springer, Heidelberg, 2005.
11. Tominaga, J., Shima, T., Kuwahara, M., Fukaya, T., Kolobov, A., and Nakano, T., Nanotechnology 15, 411 (2004).
12. Kolobov, A., Fons, P., Frenkel, A., Ankudinov, A., Tominaga, J., and Uruga, T., Nature Materials 3, 703 (2004).
13. Lezec, H. J. and Thio, T., Opt. Express 12, 3629 (2004).
14. Shima, T. and Tominaga, J., Jpn. J. Appl. Phys. 42, 3479 (2003).
15. Delaey, L.Zeitschrift fure Metallkunde 80,731736 (1989)
16. Kolobov, A.V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., Katayama, Y., Hammouda, T., and Uruga, T., Phys. Rev. Lett., 2006 (in print).
17. Hecht, E., Optics, Addison-Wesley, 1987.
18. Kim, S. Y., Kim, A. J., Seo, H., and Kim, M. R., Jpn. J. Appl. Phys. 38, 1713 (1999).
19. Weinic, W., Pamungkas, A., Detemple, R., Steimer, C., Blugel, S., and Wuttig, M., Nature Materials 5, 56 (2006).
20. Kifune, K., Kubota, Y., Matsunaga, T., and Yamada, N., Acta Crystallographica B 61, 492 (2005).
21. Laurenzis, M., Forest, M., Bolivar, P. H., and Kurz, H., Jpn. J. Appl. Phys. 43, 4700 (2004).
22. Khvostantsev, L.G., Orlov, A.I., Abrikosov, N. Kh., and Ivanova, L.D., Physica Staqtus Solidi, a 58, 37 (1980).
23. Kikukawa, T., Nakano, T., Shima, T., and Tominaga, J., Appl. Phys. Lett. 81, 4697 (2002).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed