Skip to main content Accessibility help
×
Home

Localized Excitons in InGaN

  • S. ChichiBu (a1), T. Deguchi (a2), T. Sota (a2), K. Wada (a3) and S. Nakamura (a4)...

Abstract

Emission mechanisms of the device-quality quantum well (QW) structure and bulk three dimensional (3D) InGaN materials grown on sapphire substrates without any epitaxial lateral overgrown GaN (ELOG) base layers were investigated. The InxGx1−xN layers showed various degree of spatial potential (bandgap) fluctuation, which is probably due to a compositional inhomogeneity or monolayer thickness fluctuation produced by some kinetic driving forces initiated by the threading dislocations (TDs) or growth steps during the growth. The degree of fluctuation changed remarkably around nominal InN molar fraction x=0.2, which changes to nearly 8–10 % for the strained InxGa1−xN. This potential fluctuation induces energy tail states both in QW and 3D InGaN, showing a large Stokes-like shift combined with the red shift due to quantum confined Stark effect (QCSE) induced by the piezoelectric field. The spontaneous emission from undoped InGaN single quantum well (SQW) light-emitting diodes (LED's), undoped 3D double heterostructure (DH) LED's, and multiple quantum well (MQW) laser diode (LD) wafers was assigned as being due to the recombination of excitons localized at the potential minima, whose area was determined by cathodoluminescence (CL) mapping to vary from less than 60 nm to 300 nm in lateral size in the case of QW's. The lasing mechanisms of the cw In0.15Gao.85N MQW LD's having small potential fluctuation, whose bandgap broadenings are less than about 50 meV, can be described by the well-known electron-hole-plasma (EIHP) picture with Coulomb enhancement. The inhomogenous MQW LD's are considered to lase by EHP in segmented QW's or Q-disks. It is desirable to use entire QW planes with small potential inhomogeneity as gain media for higher performance LD operation.

Copyright

References

Hide All
1. Important data and references are cited in the textbook [Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer, Berlin, 1997)]; recent data are from S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y Sugimoto, H. Kiyoku, Jpn J. Appl. Phys. 36, L 1059 (1997); They further adopted a modulation-doped superlattice cladding layers and ELOG layers, and the accelaration test has been done at 50°0C [S. Nakamura, presented at The 2nd Intemati. Conf. on Nitride Semiconductors, Tokushima, Japan, Oct. 27–31, 1997].
2. Akasaki, I., Sota, S., Sakai, H., Tanaka, T., Koike, M. and Amano, H., Electron. Lett. 32,1105 (1996).
3. Itaya, K., Onomura, M., Nishio, J., Sugiura, L., Saito, S., Suzuki, M., Rennie, J., Nunoue, S., Yamamoto, M., Fujimoto, H., Kokubun, Y., Ohba, Y, Hatakoshi, G., and Ishikawa, M., Jpn. J. Appl. Lett. 35, L1315 (1996).
4. Bulman, G. E., Doverspike, K., Sheppard, S. T., Weeks, T. W., Kong, H. S., Dieringer, H. M., Edmond, J. A., Brown, J. D., Swindell, J.T., and Schetzina, J. F., Electron. Lett. 33, 1556 (1997).
5. Kuramata, A., Domen, K., Soejima, R., Horino, K., Kubota, S., and Tanahashi, T., Proc. 2nd Intemati. Conf. on Nitride Semiconductors, (Tokushima, Japan, 1997) pp450.
6. Mack, M. P., Abare, A., Aizcorbe, M., Kozodoy, P., Keller, S., Mishra, U. K., Coldren, L. A., and DenBaars, S. P., Mater. Res. Soc. Internet J. Nitride Semicond. Res. 2, 41 (1997).
7. Koukitsu, A., Takahashi, N., Taki, T., and Seki, H., Jpn. J. Appl. Phys. 35, L673 (1996).
8. Ho, I-hsiu and Stringfellow, G. B., Appl. Phys. Lett. 69, 2701 (1996).
9. Matsuoka, T., Appl. Phys. Lett. 71, 105 (1997).
10. Takeuchi, T., Takeuchi, H., Sota, S., Sakai, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L177 (1997); Proc. 2nd Intemati. Conf. on Nitride Semiconductors, (Tokushima, Japan, 1997) pp.450.
11. Chichibu, S., Azuhata, T., Sota, T. and Nakamura, S., J. Appl. Phys. 79,2784 (1996); Proc. Int. Symp. On Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1996), -pp.202; S. Chichibu, H. Okumura, S. Nakamura, G. Feuillet, T. Azuhata, T. Sota and S. Yoshida, Jpn. J. Appl. Phys. 36, 1976 (1997).
12. Monemar, B., Bergman, J. P., Amano, H., Akasaki, I., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Proc. Int Symp. on Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1996), pp. 135.
13. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., 38th Electron. Mater. Conf., Santa Barbara, CA, June 26–28, 1996, Late News Paper W-10; Appl. Phys. Lett. 69,4188 (1996); Mater. Res. Soc. Symp. Proc. Vol.449, 653 (1997); Appl. Phys. Lett. 70, 2822 (1997).
14. Narukawa, Y., Kawakami, Y, Fujita, Sz., Fujita, Sg., and Nakamura, S., Phys. Rev. B 55, R1938 (1997); Y Narukawa, Y Kawakami, M. Funato, Sz. Fujita, Sg. Fujita, and S. Nakamura, Appl. Phys. Lett. 70,981 (1997).
15. Chichibu, S., Wada, K., and Nakamura, S., Appl. Phys. Lett. 71,2346 (1997).
16. Smith, M., Chen, G., Lin, J. Y., Jiang, H., Khan, M. A., and Chen, Q., Appl. Phys. Lett. 69,2837 (1996).
17. Scholz, F., Haerle, V., Steuber, F., Sohmer, A., Bolay, H., Syganow, V., Doemen, A., Im, J. A-S., Hangleiter, A., Duboz, J. Y., Galtier, P., Rosencher, E., Ambacher, O., Brunner, D., and Lakner, H., Mater. Res. Soc. Symp. Proc. Vol.,449, 3 (1997).
18. Sugawara, M., Phys. Rev. B 51, 10743 (1995).
19. For a review, see for example, Haug, H. and Koch, S. W., Quantum Theory of the Optical and Electronic Propres of Semiconductors, (World Scientific, Singapore, 1990) and W. W. Chow, S. W. Koch, and M. Sargent II, Semiconductor-Laser Physics, (Springer, Berlin, 1994); W. W. Chow, A. F Wright and J. S. Nelson, Appl. Phys. Let. 68, 296 (1996).
20. Cardona, M., in Modulation Spectroscopy, Solid State Physics Suppl. 11, ed. Seitz, S., Tumbull, D. and Ehrenreich, H. (Academic, New York, 1969); D. E. Aspnes, Handbook on Semiconductors, ed. T. S. Moss (North-Holland, Amsterdam, 1980) Vol. 2, Chap. 4A, p. 109; D. E. Aspnes, Surf. Sci. 37, 418 (1973).
21. Shaldee, K. L. and Leheny, R. F., Appl. Phys. Left. 18,475 (1971); K. L. Shaklee, R. F. Leheny, and R. E. Nahory, Appl. Phys. Lett. 19, 302 (1971).
22. Deguchi, T., Azuhata, T., Sota, T., Chichibu, S., and Nakamura, S., European Mater. Res. Soc. 1997 Spring Meeting, Strasbourg, France, Jun.16–20, 1997, L-XIII-3; to be published in Mater. Sci. Engineering B.
23. Azuhata, T., Sota, T., Suzuki, K., and Nakamura, S., J. Phys. Condens. Mat. 7, L129 (1995); T. Azuhata, T. Matsunaga, K. Shimada, K. Yoshida, T. Sota, K. Suzuki, and S. Nakamura Physica B 219/220, 493 (1996).
24. Chichibu, S., Mizutani, T., Shioda, T., Nakanishi, H., Deguchi, T., Azuhata, T., Sota, T, and Nakamura, S., Appl. Phys. Lett. 70,3440 (1997).
25. Chichibu, S., Shikanai, A., Azuhata, T., Sota, T., Kuramata, A., Horino, K., and Nakamura, S., Appl. Phys. Lett. 68,3766 (1996); A. Shikanai, T Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, and S. Nakamura, J. Appl. Phys. 81, 417 (1997).
26. Suzuki, M., Uenoyama, T., and Yanase, A., Phys. Rev. B 52, 8132 (1995).
27. Dingle, R-, Sell, D. D., Stokowski, S. E., and Ilegems, M., Phys. Rev. B 4, 1211 (1971).
28. Monemar, B., Phys. Rev. B 10, 676 (1974).
29. Shirakata, S. and Chichibu, S., J. Appl. Phys. 80, 2043 (1996).
30. Im, J. S., Haerle, V., Scholz, F., and Hangleiter, A., MRS Internet J. Nitride Semicond. Res. 1, 37 (1996).
31. Smith, D. L. and Mailhiot, C., Phys. Rev. Lett. 58, 1264 (1987).
32. The piezoelectric field was calculated with the values ofpiezoelectric constants of GaN according to Halsall, M. P., Nicholls, J. E., Davies, J. J., Cockayne, B., and Wright, P. J. [J. Appl. Phys. 71, 907 (1992)], and the Stark shift due to the electric field was calculated by the variational method neglecting exciton binding energy. Calculations are based on work by D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gross, W. Wiegmann, T. H. Wood, and C. A. Burrus [Phys. Rev. Lett 53,2173(1981) and Phys. Rev. B 32, 1043 (1985)].
33. Harris, C. I., Monemar, B., Amano, H., and Akasaki, I., Appl. Phys. Lett. 67,840 (1995).
34. Taguchi, T., Maeda, T., Yamada, Y, Nakamura, S., and Shinomiya, G., Proc. Int. Symp. On Blue Laser and Light Emitting Diodes (Ohmsha, Tokyo, 1996), p.372.
35. Keller, S., Keller, B. P., Minsky, M. S., Bowers, J. E., Mishra, U. K., DenBaars, S. P., and Seifert, W, presented at The 2nd International Conf. on Nitride Semiconductors, Tokushima, Japan, Oct.27–31, 1997, Session M2–5; and also a private communication.
36. Uenoyama, T., Phys. Rev. B 51, 10228 (1995); and also a private communication.
37. Sato, H., Sugahara, T., Naoi, Y, and Sakai, S., Proc. 2nd Intemati. Conf. on Nitride Semiconductors, (Tokushima, Japan, 1997) p. 28.
38. Kisielowski, C. and Liliental-Weber, Z. (private communication); they have observed a dot-like nanoscale compositional disorder in the SQW LED wafers using the electron scattering potential mapping method.
39. Ponce, F. A., presented at European Mater. Res. Soc. 1997 Spring Meeting, Strasbourg, France, Jun. 16–20, 1997, No. L-VII.4 (late news).
40. H. -Kwon, J., Lee, Y. H., Miki, O., Yamano, H., and Yoshida, A., Appl. Phys. Lett. 69,937 (1996).
41. Sota, T., Chichibu, S., and Nakamura, S. (private communication). The Eex. value in GaN/Al0.1Ga0.9N QW was calculated by the variational method according to G. Bastard, E. E. Mendez, L. L.Chang, and L. Esaki [Phys. Rev. B 26, 1974 (1982)]. In the calculation, we started from the Hamiltonian suitable to QW's including mass and dielectric constant anisotropy, assuming an infinite barrier height to simplify the calculation. After variable transformations for Z coordinates (perpendicular to the QW plane) which formally remove the mass anisotropy in the Harniltonian, Eex was calculated using the trial function for the excitonic relative motion given by exp{-[p 2+(Ze−Zn)2]1/2/λ}, considering the fact that the 3D exciton Bohr radius is as small as 3.4 nm. Here λ is the variational parameter, p is the absolute value of the relative position of electron and hole in the QW plane, and Ze(Zn) is the transformed Z coordinate of the electron (hole).
42. Frankowsky, G., Steuber, F., Haerle, V, Scholz, F, and Hangleiter, A., Appl. Phys. Lett. 68, 3746 (1996).
43. Kuball, M., Jeon, E. -S., Song, Y -K., Nurmikko, A., Kozodoy, P., Abare, A., Keller, S., Coldren, L. A., Mishra, U. K., DenBaars, S. P., and Steigerwald, D. A., Appl. Phys. Leat. 70,2580 (1997).
44. Chen, W., Fritze, M., Nurmikko, A. V., Ackley, D., Covard, C., and Lee, H., Phys. Rev. Lett. 64, 2434 (1990).
45. Mueller, J. F., Phys. Rev. B 42, 11189 (1990).

Related content

Powered by UNSILO

Localized Excitons in InGaN

  • S. ChichiBu (a1), T. Deguchi (a2), T. Sota (a2), K. Wada (a3) and S. Nakamura (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.