Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T15:12:01.588Z Has data issue: false hasContentIssue false

Load Carrying Mechanisms in Wood at Different Observation Scales: A Combined Random-Periodic Multistep Homogenization Scheme

Published online by Cambridge University Press:  26 February 2011

Karin Hofstetter
Affiliation:
karin.hofstetter@tuwien.ac.at, Vienna University of Technology, Institute for Mechanics of Materials and Structures, Karlsplatz 13/202, Vienna (Wien), A-1040, Austria
Christian Hellmich
Affiliation:
christian.hellmich@tuwien.ac.at, Vienna University of Technology (TU Wien), Vienna (Wien), A-1040, Austria
Josef Eberhardsteiner
Affiliation:
josef.eberhardsteiner@tuwien.ac.at, Vienna University of Technology (TU Wien), Vienna (Wien), A-1040, Austria
Get access

Abstract

Wood exhibits a highly diversified microstructure. It appears as a solid-type composite material at a length scale of some micrometers, while it resembles an assembly of plate-like elements arranged in a honeycomb fashion at the length scale of some hundreds of micrometers. These structural features of wood result in different load carrying mechanisms at different observation scales and at different loading conditions. In this paper, we elucidate the main load carrying mechanisms by means of a micromechanical model for wood across different species, based on tissue-independent stiffness properties of cellulose, lignin, and water. The model comprises three homogenization steps, two based on continuum micromechanics and one on the unit cell method. The latter represents plate-like bending and shear of the cell walls, due to transverse shear loading and axial straining in the tangential direction Accurate representation of these deformation modes results in accurate (orthotropic) stiffness estimates, which deviate, on average, by less than 10 % from corresponding experimental results, across a variety of softwood species.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hofstetter, K., Hellmich, C. and Eberhardsteiner, J., Eur. J. Mech. A-Solid 24, 1030 (2004).Google Scholar
2. Zaoui, A., J. Eng. Mech.-ASCE 8, 128 (2002).Google Scholar
3. Zaoui, A. in Continuum Micromechanics, edited by P., Suquet, (CISM Courses and Lectures No. 377, Springer Verlag, Wien, New York, 1997) pp. 291347.Google Scholar
4. Suquet, P. in Homogenization Techniques for Composite Media, edited by E., Sanchez-Palencia and A., Zaoui, (Lecture Notes in Physics No. 272, Springer Verlag, Wien, New York, 1987) pp. 193278.Google Scholar
5. Eshelby, J.D., P. Roy. Soc. Lond. A Mat. 241, 376 (1957).Google Scholar
6. Laws, N., J. Elasticity 7, 91 (1977).Google Scholar
7. Hofstetter, K., Hellmich, C. and Eberhardsteiner, J. in Poromechanics III: Proceedings of the Third Biot Conference on Poromechanics, edited by Y.N., Abousleiman, A.H.-D., Cheng and Ulm, F.-J. (Balkema, Oklahoma, 2005) pp. 149154.Google Scholar
8. Timell, T.E., Compression Wood in Gymnosperms (Springer Verlag, Berlin, 1986).Google Scholar
9. Wimmer, R., Wood Fiber Sci. 27, 413 (1995).Google Scholar
10. Jernkvist, L.O. and Thuvander, F., Holzforschung 35, 309 (2001).Google Scholar
11. Lundgren, C., Silva Fennica 38, 95 (2004).Google Scholar
12. Midorikawa, Y., Ishida, Y. and Fujita, M., J. Wood Sci. 51, 201 (2005).Google Scholar
13. Watanabe, U., Norimoto, M., Ohgama, T., and Fujita, M., Holzforschung 53, 209 (1999).Google Scholar
14. Ando, K. and Ondo, H., J. Wood Sci. 45, 120 (1999).Google Scholar
15. Midorikawa, Y., Ishida, Y. and Fujita, M., J. Wood Sci. 51, 209 (2005).Google Scholar
16. Donaldson, L.A. and Lausberg, M.J.F., IAWA J. 19, 321 (1998).Google Scholar
17. Astley, R.J., Stol, K.A. and Harrington, J.J., Holz Roh. Werkst. 56, 43 (1998).Google Scholar
18. Mayr, E., This is Biology – the Science of the Living World (Harvard University Press, Cambridge, 1997).Google Scholar
19. Hellmich, C., Barthelemy, J.-F. and Dormieux, L., Eur. J. Mech. A-Solid 23, 783 (2004).Google Scholar
20. Hellmich, C., Ulm, F.-J. and Dormieux, L., Biomech. Model. Mechanobiol. 4, 219 (2004).Google Scholar