Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T10:08:32.316Z Has data issue: false hasContentIssue false

Limiting Native Oxide Regrowth for High-k Gate Dielectrics

Published online by Cambridge University Press:  01 February 2011

K. Choi
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, TX 79409
H. Harris
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, TX 79409
S. Gangopadhyay
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, TX 79409
H. Temkin
Affiliation:
Nano Tech Center, Texas Tech University, Lubbock, TX 79409
Get access

Abstract

A cleaning process resulting in atomically smooth, hydrogen-terminated, silicon surface that would inhibit formation of native silicon oxide is needed for high-k gate dielectric deposition. Various cleaning methods thus need to be tested in terms of resistance to native oxide formation. Native oxide re-growth is studied as a function of exposure time to atmospheric ambient using ellipsometry. Hafnium dioxide film (k ~23) is deposited on the as-cleaned substrates by electron beam evaporation and subsequently annealed in hydrogen. The difference in the effective oxide thickness re-grown on surfaces treated with the conventional RCA and modified Shiraki cleaning methods, after one-hour exposure, can be as large as 2 Å. This is significant in device applications demanding equivalent oxide thickness less than 20 Å. The degree of hydrogen passivation, surface micro-roughness and organic removal capability are considered to be the main factors that explain the differences between the cleaning methods. Data derived from capacitance-voltage analysis of test capacitors verified the trend observed in the native oxide thickness measurements. An increase of 10~15 % in accumulation capacitance is observed in the samples treated by the new cleaning method.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Aoyama, T., Yamazaki, T., and Ito, T., Appl. Phys. Lett. 61 (1), 102 (1992)Google Scholar
2 Mende, G., Finster, J., Flamm, D., and Schulze, D., Surf.Sci. 128 169 (1983); D. Graf, M. Grundner, and R. Schulz, J. Appl. Phys. 68 (10), 5155 (1990); M. Niwano, J. Kageyama, and N. Miayamoto, J. Appl. Phys. 76 (4) 2157 (1994); T. Miura, M. Niwano, D. Shoji, and N. Miyamoto, Appl. Surf. Sci. 100/101 454 (1996); T. Hattori, T. Aiba, E. Iijima, Y. Okube, and M. Katayama, Appl. Surf. Sci. 104/105 323 (1996); H. Ikeda, Y. Nakagawa, S. Zaima, Y. Ishibashi, and Y. Yasuda, Jpn. J. Appl. Phys. Vol 38, 3422 (1999); X. Zhang, E. Grafunkel, Y. J. Chabal, S. B. Christman, and E. E. Chaban, Appl. Phys. Lett. 79 (24), 4051 (2001);Google Scholar
3 Graf, D., Grundner, M., and Schulz, R., J. Appl. Phys. 68 (10), 5155 (1990)Google Scholar
4 Heide, P. A. M., Hoffman, M. J., and Ronde, H. J., J. Vac. Sci. Technol. A 7 (3) 1719 (1989)Google Scholar
5 Mende, G., Finster, J., Flamm, D., and Schulze, D., Surf. Sci. 128 169 (1983)Google Scholar
6 Handbook of Silicon Wafer Cleaning Technology: Science, Technology, and Applications, edited by Kern, Werner (Noyes, Park Ridge, NJ, 1993)Google Scholar
7Accepted to J. Vac. Sci. Technol. AGoogle Scholar
8 Fenner, D.B., Biegelsen, D. K., and Brigans, R. D., J. Appl. Phys. 66 (1) 419 (1989)Google Scholar
9 Garrido, B., Montserrat, J., and Morante, J. R., J. Electrochem. Soc., Vol. 143, No. 12, 4059 (1996)Google Scholar
10 Panner, J. C., Conrad, E. W. and Rogers, J. L., Thin Solid Films, 206, 381 (1991)Google Scholar
11 Kim, S. Y., and Irene, E. A., Rev. Sci. Instrum. 66 (11) 5277 (1995)Google Scholar
12 Miura, T., Niwano, M., Shoji, D., and Miyamoto, N., Appl. Surf. Sci. 100/101 454 (1996)Google Scholar
13 Utani, K., and Adachi, S., Jpn. J. Appl. Phys. Vol. 32, 3572 (1993)Google Scholar
14 Yao, H., Wollam, J. A. and Alterovitz, S. A., Appl. Phys. Lett. 62, 3324 (1993)Google Scholar
15 Chabal, Y. J., Higashi, G.. S., Raghavachari, K., Burrows, V. A., J. Vac. Sci. Technol. A 7, 2104 (1989)Google Scholar
16 Morita, Y., Tokumoto, H., J. Vac. Sci. Technol. A 14, 854 (1996)Google Scholar
17 Dabrowski, J., Mussig, H. J., Silicon Surfaces and Formation of Interfaces, p.281, World Scientific, 2000 Google Scholar
18 Zhang, X., Garfunkel, E., Chabal, Y. J., Christman, S.B., and Chaban, E. E., Appl. Phys. Lett. 79, 4051 (2001)Google Scholar
19 Park, B.K., Park, J., Cho, M., and Hwang, C.S., Appl.Phys.Lett. 80 2368 (2002)Google Scholar
20 Brews, J. R., J. Appl. Phys. 45, 1276 (1974)Google Scholar