Skip to main content Accessibility help

Light-Matter Interaction of Strong Laser Pulses in the Micro-, Nano-, and Pico-second Regimes

  • Hans Agren (a1), Pontus Welinder (a2), Robert Erlandsson (a2), Johan Henriksson (a2), Patrick Norman (a2) and Hans Ågren (a1)...


Light propagation in a medium is sensitively dependent on the shape and intensity of the optical pulse as well as on the electronic and vibrational structure of the basic molecular units. We review in this paper results of systematic studies of this problem for isotropic media. Our theoretical approach|the quantum mechanical{electrodynamical (QMED) approach is based on a quantum mechanical account of the many-level electron-nuclear medium coupled to a numerical solution of the density matrix and Maxwell's equations. This allows to accommodate a variety of nonlinear e ects which accomplish the propagation of strong light pulses. Particular attention is paid to the understanding of the role of coherent and sequential excitations of electron-nuclear degrees of freedom. The QMED combination of quantum chemistry with classical pulse propagation allows to estimate the optical transmission from cross sections of multi-photon absorption processes and from considerations of propagation e ects, saturation and pulse e ects. Results of the theory suggest that in the nonlinear regime it is often necessary to account simultaneously for coherent one-step and incoherent step-wise multi-photon absorption, as well as for o -resonant excitations even when resonance conditions prevail. The dynamic theory of nonlinear propagation of a few interacting intense light pulses is here highlighted in a study of the optical power limiting with platinum-organic molecular compounds.



Hide All
1 McKay, T. J., Bolger, J. A., Staromlynska, J., and Davy, J. R., J. Chem. Phys. 118, 5537 (1998).
2 Parker, C. A., Photoluminescence of solutions (Elsevier, 1968).
3 Cooper, T. M., McLean, D. G., and Rogers, J. E., Chem. Phys. Lett. 349, 31 (2001).
4 Norman, P., Cronstrand, P., and Ericsson, J., Chem. Phys. 285, 207 (2002).
5 Rogers, J. E., Cooper, T. M., Fleitz, P. A., Glass, D. J., and McLean, D. G., J. Phys. Chem. A 106, 10108 (2002).
6 Rogers, J. E., Nguyen, K. A., Hufnagle, D. C., McLean, D. G., Su, W., Gossett, K. M., Burke, A. R., Vinogradov, S. A., Pachter, R., and Fleitz, P. A., J. Phys. Chem. A 107, 11331 (2003).
7 Rogers, J. E., Slagle, J. E., McLean, D. G., Sutherland, R. L., Sankaran, B., Kannan, R., Tan, L.-S., and Fleitz, P. A., J. Phys. Chem. A 108, 5514 (2004).
8 Baev, A., Gel'mukhanov, F., Macak, P., Agren, H., and Luo, Y., J. Chem. Phys. 117, 6214 (2002).
9 Baev, A., Gel'mukhanov, F., Kimberg, V., and Agren, H., J. Phys. B: At. Mol. Opt. Phys. 36, 3761 (2003).
10 Jackson, J. D., Classical Electrodynamics (Wiley, New York, 1999), 3rd ed.
11 Boyd, R. W., Nonlinear Optics (Academic Press, Inc., San Diego, 1992).
12 Gel'mukhanov, F., Baev, A., Macak, P., Luo, Y., and Agren, H., J. Opt. Soc. Am. B 19, 937 (2002).
13 Becke, A. D., J. Chem. Phys. 98, 5648 (1993).
14 Bergner, A., Dolg, M., Kuchle, W., Stoll, H., and Preuss, H., Mol. Phys. 80, 1431 (1993).
15 Andrae, D., Haussermann, U., Dolg, M., Stoll, H., and Preuss, H., Theor. Chim. Acta 77, 123 (1990).
16 Hehre, W. J., Ditchfield, R., and Pople, J. A., J. Chem. Phys. 56, 2257 (1972).
17 Yanai, T., Tew, D. P., and Handy, N. C., Chem. Phys. Lett. 393, 51 (2004).
18 Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A. Jr, Stratmann, R. E., Burant, J. C. et al. , Gaussian 98 (1998), Gaussian Inc., Pittsburgh PA, 1998. See
19DALTON, a molecular electronic structure program, Release 2.0 (2005), see
20 Peach, M. J. G., Helgaker, T., Salek, P., Keal, T. W., Lutnæs, O. B., Tozer, D. J., and Handy, N. C., Phys. Chem. Chem. Phys. 8, 558 (2006).
21 Paterson, M. J., Christiansen, O., Pawlowski, F., JÕrgensen, P., Hattig, C., Helgaker, T., and Salek, P., J. Chem. Phys. 124, 054322 (2006).
22 Lopes, C., private communication.
23 Norman, P. and Ruud, K., in Nonlinear optical properties of matter: From molecules to condensed phases, edited by Papadopoulos, M., Leszczynski, J., and Sadlej, A. J. (Kluwer Academic Press, 2006).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed