Skip to main content Accessibility help
×
Home

Leveraging Contact Effects for Field-Effect Transistor Technologies with Reduced Complexity and Superior Current Uniformity

  • R. A. Sporea (a1), S. Georgakopoulos (a1), X. Xu (a2), X. Guo (a2), M. Shkunov (a1), J. M. Shannon (a1) and S. R. P. Silva (a1)...

Abstract

In order to achieve high performance, the design of devices for large-area electronics needs to be optimized despite material or fabrication shortcomings. In numerous emerging technologies thin-film transistor (TFT) performance is hindered by contact effects. Here, we show that contact effects can be used constructively to create devices with performance characteristics unachievable by conventional transistor designs. Source-gated transistors (SGTs) are not designed with increasing transistor speed, mobility or sub-threshold slope in mind, but rather with improving certain aspects critical for real-world large area electronics such as stability, uniformity, power efficiency and gain. SGTs can achieve considerably lower saturation voltage and power dissipation compared to conventional devices driven at the same current; higher output impedance for over two orders of magnitude higher intrinsic gain; improved bias stress stability in amorphous materials; higher resilience to processing variations; current virtually independent of source-drain gap, source-gate overlap and semiconductor thickness variations. Applications such as amplifiers and drivers for sensors and actuators, low cost large area analog or digital circuits could greatly benefit from incorporating the SGT architecture.

Copyright

References

Hide All
1. Mariucci, L., Rapisarda, M., Valletta, A., Jacob, S., Benwadi, M., Fortunato, G., Org. Electron. 14, 8693 (2013).
2. Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L., Sheraw, C. D., Nichols, J. A., Jackson, T.N., Solid-State Electronics 47, 297301 (2003) .
3. Georgakopoulos, S., PhD Dissertation, University of Surrey, unpublished, (2013).
4. Choi, S.-J., Choi, C.-J., Kim, J.-Y., Jang, M., and Choi, Y.-K., IEEE Trans Electron Dev., 58, 2, 427432 (2011).
5. Rapisarda, M., Valletta, A. Daami, A., Jacob, S., Benwadi, M., Coppard, R., Fortunato, G., Mariucci, L., Org. Electron. 13, 2017 (2012).
6. Sporea, R. A., Shannon, J. M. and Ravi, S. Silva, P., ECS PRiME 2012 Meet. Abstr. MA2012-02, 3065 (2012).
7. Lindner, T., Paasch, G., Scheinert, S., IEEE Trans Electron Dev., 51, 1, 4755 (2005).
8. Ma, A. M., Gupta, M., Rezwana Chowdhury, F., Shen, M., Bothe, K., Shankar, K., Tsui, Y., Barlage, D. W., Solid-State Electronics 76, 104108 (2012).
9. Shannon, J. M. and Gerstner, E. G., IEEE Electron Dev. Lett., 24, 6, 405407 (2003).
10. Shannon, J. M. and Gerstner, E. G., Solid-State Electronics, 48, 6, 11551161 (2004).
11. Sporea, R. A., Trainor, M. J., Young, N. D., Shannon, J. M., Silva, S. R. P., IEEE Trans Electron Dev., 57, 10, 24342439 (2010).
12. Opoku, C., Newton, M., Shkunov, M., MRS Fall 2010 Abstracts, F10.3 (2010).
13. Shannon, J. M., Balon, F., Solid-State Electronics 52, 449454 (2007) .
14. Sporea, R. A., Trainor, M. J., Young, N. D., Shannon, J. M., Silva, S. R. P., IEEE Trans Electron Dev., 59, 8, 21802186, (2012).
15. Sporea, R.A., Guo, X., Shannon, J.M., Silva, S.R.P., Proc. CAS 2009, 413416 (2009).

Keywords

Leveraging Contact Effects for Field-Effect Transistor Technologies with Reduced Complexity and Superior Current Uniformity

  • R. A. Sporea (a1), S. Georgakopoulos (a1), X. Xu (a2), X. Guo (a2), M. Shkunov (a1), J. M. Shannon (a1) and S. R. P. Silva (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed