Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T16:18:52.764Z Has data issue: false hasContentIssue false

LDH-DNA Nanohybrids: a complete biophysical characterization

Published online by Cambridge University Press:  01 February 2011

Fabrice Leroux
Affiliation:
Laboratoire des Matériaux Inorganiques UMR 6002
Málha Ben Belkacen
Affiliation:
Laboratoire des Matériaux Inorganiques UMR 6002
Ghislain Guyot
Affiliation:
Laboratoire de Photochimie Moléculaire et Macromoléculaire UMR 65051 - Université Blaise Pascal (Clermont-Ferrand II), 24 avenue des Landais, 63177 Aubière cedex, France E-mail: gueho@chimtp.univ-bpclermont.fr
Christine Taviot-Guého
Affiliation:
Laboratoire des Matériaux Inorganiques UMR 6002
Philippe Léone
Affiliation:
Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, B.P. 32229 44322 Nantes cedex, France
Laurent Cario
Affiliation:
Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, B.P. 32229 44322 Nantes cedex, France
Léa Desigaux
Affiliation:
Inserm, U533, 1 rue Gaston Veil, BP 53508, 44035 Nantes cedexl, France
Bruno Pitard
Affiliation:
Inserm, U533, 1 rue Gaston Veil, BP 53508, 44035 Nantes cedexl, France
Get access

Abstract

Recently, LDH have been considered as a new kind of gene delivery system [1, 2]. In this work, we report the formation of magnesium-gallium LDH-DNA nanohybrids using the coprecipitation method. This “self assembly” approach enabled the incorporation of long DNA fragments up to 6000–8000 bp. X-ray diffraction analyses indicate a parallel orientation of DNA double helix in the interlamellar space with respect to the hydroxide sheets. The Mg/Ga molar ratio within the hydroxide layers appears to be determined by DNA macromolecules which may interact with charged complexes that form during cation hydrolysis. The presence of DNA macromolecules also inhibits the crystal growth: hydrodynamic diameter measurements revealed homogeneous populations of particles with a mean diameter ranging from 90 to 150 nm, compatible with cell penetration through endocytosis. Concerning the charge surface of this new DNA delivery system, ζ-potential measurements indicate negative values ranging from –20 to - 40 mV which suggest incomplete DNA intercalation. Yet, this small negative surface might be suitable for protecting DNA from extra-cellular degradations without preventing cell penetration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.(a) Choy, J.H, Kwak, S.Y., Park, J.S., Jeong, Y.J. and Portier, J. J. Am. Chem. Soc. 121, 1399 (1999);Google Scholar
(b) Choy*, J.H., Kwak, S.Y., Jeong, Y.J, and Park, J.S.. Angew. Chem. Int. Ed 39, 4042 (2000);Google Scholar
(c) Choy, J.H., Park, J.S., Kwak, S.Y., Jeong, Y.J. and Han, Y.S.. Mol. Cryst. and Liq. Cryst. 341, 425 (2000);Google Scholar
(d) Mornet, S., Vekris, A., Bonnet, J., Duguet, E., Grasset, F., Choy, J.H. and Portier, J. Mater. Letters 42, 183 (2000).Google Scholar
(e) Choy, J.H., Kwak, S.Y., Park, J.S. and Jeong, Y.J. J. Mater. Chem. 11, 6, 1671 (2001).Google Scholar
(f) Kwak, S.Y., Jeong, Y.J., Park, J.S. and Choy, J.H. Solid State Ionics 151, 229 (2002).Google Scholar
(g) Kriven, W. M., Kwak, SY, Wallig, M A. and Choy, J-H MRS Bulletin, 33 (2004).Google Scholar
(h) Kwak, S.Y., Kriven, W.M., Wallig, M A. and Choy, J-H Biomaterials 25, 3059 (2004).Google Scholar
(i) Choy, J-H J Phys. Chem. of Solids 65, 373 (2004)Google Scholar
2. (a) Pitard, B., PCT Int. Appl. WO 2002049869 2001.Google Scholar
(b) Pitard, B. B. PCT Int. Appl. WO 2003000284 2003 Google Scholar
3. Ambrogi, V., Fardella, G., Grandolini, G. and Perioli, L., Int. J. Pharma. 220, 23 (2001).Google Scholar
4. Khan, A.L., Lei, L., Norquist, A.J. and O'Hare, D., D. Chem. Commun. 2342 (2001)Google Scholar
5. Wilson, O.C., Olorunyolemi, T., Jaworski, A., Borum, L., Young, D., Siriwat, A., Dickens, E., Oriakhi, C. and Lerner, M., M. Appl. Clay. Sci. 15, 265 (1999)Google Scholar
6. Leroux, F., Gachon, J. and Besse, J.P., J. Solis State Chem. 245 (2004)Google Scholar
7. Cölfen, H. and Mann, S., Angew. Chem. Int. Ed. 42, 2350 (2003)Google Scholar
8. Lopez-Salinas, E., Garcia-Sanchez, M., Ramon-Garcia, M.L. and Schifter, I, J. Porous Mater. 3, 169 (1996)Google Scholar
9. Shambrook, J., Firsch, E.F. and Maniatis, T., In Molecular Cloning. A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Plainview, NY, 1989; B15.Google Scholar
10. Miyata, S., Clays Clay Miner. 31, 305 (1983)Google Scholar
11. (a) Schneider, B., Patel, K. and Berman, H.M., Biophys. J. 15, 2422 (1998)Google Scholar
(b) Williams, M.C., Wenner, J.R., Rouzina, L. and Bloomfield, V.A., V.A. Biophys. J. 80, 874 (2001).Google Scholar
(c) Tarahovsky, Y.S., Rakhmanova, V.A., Epand, R.E. and MacDonald, R.C. Biophys. J. 82, 264 (2002)Google Scholar
12. Leroux, F., Adachi-Pagano, M., Intissar, M., Chaumière, S., Forano, F. and Besse, J.P., J. Mater. Chem. 11, 105 (2001)Google Scholar
13. Monar, K. and Philips, P.J. J. Polym. Sci. B: Polym. Phys. 35, 1843 (1997)Google Scholar
14. Bolton, P.H. and James, T.L., J. Phys. Chem. 83, 3359 (1979)Google Scholar
15. Gorenstein, D. A., Chem. Rev. 94, 1315 (1994)Google Scholar
16. Pitard, B. Somat. Cell Mol. Genet. 27, 5 (2002)Google Scholar