Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T02:18:02.772Z Has data issue: false hasContentIssue false

Layer-By-Layer Oxidation of Silicon Surfaces

Published online by Cambridge University Press:  10 February 2011

Heiji Watanabe
Affiliation:
Fundamental Research Laboratories, NEC Corporation, Tsukuba, Ibaraki 305-8501, Japan, watanabe@frl.cl.nec.co.jp
Noriyuki Miyata
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Tsukuba, Ibaraki 305-0046, Japan
Masakazu Ichikawa
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Tsukuba, Ibaraki 305-0046, Japan
Get access

Abstract

Layer-by-layer oxidation of Si(111) and (001) surfaces has been studied by using scanning reflection electron microscopy (SREM). We found that SREM images reveal interfacial structures of the SiO2/Si system. Our results showed that the initial step structure of Si substrates was preserved at SiO2/Si interfaces and that interfacial steps did not move laterally during oxidation. We also observed a periodic reversal of terrace contrast in SREM images during the initial oxidation of Si(001) surfaces. These results indicate layer-by-layer oxidation of Si surfaces, which is promoted by the nucleation of nanometer-scale oxide islands at SiO2/Si interfaces. In addition, we investigated the kinetics of initial layer-by-layer oxidation of Si(001) surfaces. We found that a barrierless oxidation of the first subsurface layer, as well as oxygen chemisorption onto the top layer, occur at room temperature. The energy barrier of the second-layer oxidation was found to be 0.3 eV. The initial oxidation kinetics are discussed based on first-principles calculations. Moreover, we confirmed that the layer-by-layer oxidation of Si surfaces holds true for conventional furnace oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See for example, Momose, H. S. et al., IEEE Trans. Electron Devices ED–43, 1233 (1996); Timp, G. et al., IEDM Tech. Dig., 930 (1997); M. Koh et al. IEDM Tech. Dig., 919 (1998).Google Scholar
2 Hahn, P. O. and Henzler, M., J. Vac. Sci. Technol. A 2, 574 (1984).10.1116/1.572449Google Scholar
3 Goodnick, S. M., Ferry, D. K., Wilmsen, C. W., Liliental, Z., Fathy, D., and Krivanek, O. L., Phys. Rev. B 32, 8171 (1985).10.1103/PhysRevB.32.8171Google Scholar
4 Iwata, S. and Ishizaka, A., J. Appl. Phys. 79, 6653 (1996).10.1063/1.362676Google Scholar
5 Krivanek, O. L., Sheng, T. T., and Tsui, D. C., Appl. Phys. Lett. 32, 437 (1978).10.1063/1.90077Google Scholar
6 Avouris, Ph., Lyo, I.-W., and Bozso, F., J. Vac. Sci. Tecnol. B 9, 424 (1991).10.1116/1.585584Google Scholar
7 Ono, Y., Tabe, M., and Kageshima, H., Phys. Rev. B 48, 14291 (1993).10.1103/PhysRevB.48.14291Google Scholar
8 Gibson, J. M. and Lanzerotti, M. Y., Nature (London) 340, 128 (1989).10.1038/340128a0Google Scholar
9 Ross, F. M. and Gibson, J. M., Phys. Rev. Lett. 68, 1782 (1992).10.1103/PhysRevLett.68.1782Google Scholar
10 Borman, V. D., Gusev, E. P., Lebedinskii, Yu. Yu., and Troyan, V. I., Phys. Rev. Lett. 67, 2387 (1991).10.1103/PhysRevLett.67.2387Google Scholar
11 Ohishi, K. and Hattori, T., Jpn. J. Appl. Phys. 33, L675 (1994).10.1143/JJAP.33.L675Google Scholar
12 Sieger, M. T., Luh, D. A., Miller, T., and Chiang, T.-C., Phys. Rev. Lett. 77, 2758 (1996).10.1103/PhysRevLett.77.2758Google Scholar
13 Watanabe, H., Fujita, K., and Ichikawa, M., Surf. Sci. 385, L952 (1997).10.1016/S0039-6028(97)00347-6Google Scholar
14 Watanabe, H., Kato, K., Uda, T., Fujita, K., Ichikawa, M., Kawamura, T., and Terakura, K., Phys. Rev. Lett. 80, 345 (1998).10.1103/PhysRevLett.80.345Google Scholar
15 Miyara, N., Watanabe, H., and Ichikawa, M., Appl. Phys. Lett. 72, 1715 (1998).Google Scholar
16 Miyata, N., Watanabe, H., and Ichikawa, M., Phys. Rev. B 58, 13670 (1998).10.1103/PhysRevB.58.13670Google Scholar
17 Watanabe, H. and Ichikawa, M., Rev. Sci. Instrum. 67, 4185 (1996).10.1063/1.1147567Google Scholar
18 Watanabe, H., Fujita, K., and Ichikawa, M., Appl. Phys. Lett. 72, 1987 (1998).10.1063/1.121241Google Scholar
19 Fujita, K., Watanabe, H., and Ichikawa, M., J. Appl. Phys. 83, 4091 (1998).10.1063/1.367162Google Scholar
20 Watanabe, H. and Ichikawa, M., Phys. Rev. B 55, 9699 (1997).10.1103/PhysRevB.55.9699Google Scholar
21 Kawamura, T., Surf. Sci. 351, 129 (1996).10.1016/0039-6028(95)01262-1Google Scholar
22 Kageshima, H. and Shiraishi, K., Phys. Rev. Lett. 81, 5936 (1998).10.1103/PhysRevLett.81.5936Google Scholar
23 Harris, J. J. and Joyce, B. A., Surf. Sci. 103, 90 (1981).10.1016/0039-6028(81)90091-1Google Scholar
24 Kato, K., Uda, T., and Terakura, K., Phys. Rev. Lett. 80, 2000 (1998).10.1103/PhysRevLett.80.2000Google Scholar
25 Ichimiya, A., Surf. Sci. 187, 194 (1987).10.1016/S0039-6028(87)80131-0Google Scholar