Skip to main content Accessibility help

Layer Disordering and Carrier Concentration in Heavily Carbon-Doped AlGaAs/GaAs Superlattices

  • H. M. You (a1), T. Y. Tan (a1), U. M. Gösele (a1), G. E. Höfler (a2), K. C. Hsieh (a2), N. Holonyak (a2) and S.-T. Lee (a3)...


Al-Ga interdiffusion, carbon acceptor diffusion, and hole reduction were studied in carbondoped Al0.4Ga0.6As/GaAs superlattices (SL). Al-Ga interdiffusion was found to be most prominent for Ga-rich annealing, with the hole concentrations in the SL almost intact during annealing. For As-rich annealing, the interdiffusivity values, DAI.Ga, are in approximate agreement with those predicted by the Fermi-level effect model, and the hole concentrations in the SL decreased dramatically after annealing. By analyzing the measured hole concentration profiles, it was found that both carbon acceptor diffusion and reduction have occurred during annealing, with both depending on As4 pressure values to the one quarter power. These As4 pressure dependencies indicate that carbon diffuses via the interstitial-substitutional mechanism while hole reduction is governed by a precipitation mechanism.



Hide All
1. Cunningham, B. T., Guido, L. J., Baker, J. E., Major, J. S. Jr., Holonyak, N. Jr., and Stillman, G. E., Appl. Phys. Lett. 55, 687 (1989).
2. Konagai, M., Yamada, T., Akatsuka, T., Saito, K., and Tokumitsu, E., J. Cryst. Growth 98, 167 (1989).
3. Guido, L. J., Cunningham, B. T., Nam, D. W., Hsieh, K. C., Plano, W. E., Major, J. S. Jr., Vesely, E. J., Sugg, A. R., Holonyak, N. Jr., and Stillman, G. E., J. Appl. Phys. 67, 2179 (1990).
4. Szafranek, I., Szafranek, M., Cunningham, B. T., Guido, L. J., Holonyak, N. Jr., and Stillman, G. E., J. Appl. Phys. 68, 5615 (1990).
5. Jamal, Z. and Goodhew, P. J., in Chemical Perspectives of Microelectronic Materials III, eds. Abernathy, C. R., Bates, C. W. Jr., Bohling, D. A., and Hobson, W. S., Mater. Res. Soc. Proc. vol. 282 (Mater. Res. Soc., Pittsburgh, PA, 1993) in press.
6. Höfler, G. E., Höfler, H. J., Holonyak, N. Jr., and Hsieh, K. C., J. Appl. Phys. 72, 5318 (1992).
7. Chiu, T. H., Cunningham, J. E., Ditzenberger, J. A., Jan, W. Y., and Chu, S. N. G., J. Crys. Growth 111, 274 (1991).
8. Saito, K., Tokumitsu, E., Akatsuka, T., Miyauchi, M., Yamada, T., Konagai, M., and Takahashi, K., J. Appl. Phys. 64, 3975 (1988).
9. Watanabe, K. and Yamazaki, H., Appl. Phys. Lett. 59, 434 (1991).
10. Abernathy, C. R., Pearton, S. J., Caruso, R., Ren, F., and Kovalchik, J., Appl. Phys. Lett. 55, 1750 (1989).
11. Enquist, P., J. Appl. Phys. 71, 704 (1992).
12. Hanna, M. C., Majerfeld, A., and Szmyd, D. M., Appl. Phys. Lett. 59, 2001 (1991).
13. Hoke, W. E., Lemonias, P. J., Weir, D. G., Hendriks, H. T., and Jackson, G. S., J. Appl. Phys. 69, 511 (1991).
14. Konagai, M., Mat. Sci. Forum 117–118, 37 (1993).
15. Han, W. Y., Lu, Y., Lee, H. S., Cole, M. W., Schauer, S. N., Moerkirk, R. P., Jones, K. A., and Yang, L. W., Appl. Phys. Lett. 61, 87 (1992).
16. Tan, T. Y., Yu, S., and Gösele, U., J. Appl. Phys. 70, 4823 (1991).
17. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 52, 1240 (1988).
18. Tan, T. Y., Gösele, U., and Yu, S., Cri. Rev. Sol. Stat. Mater. Sci. 17, 47 (1991).
19. Gösele, U. and Morehead, F., J. Appl. Phys. 52, 4617 (1981).
20. Arthur, J. R., J. Phys. Chem. Solids 28, 2257 (1967).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed